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ABSTRACT

0.1 Chapter 1 Abstract

Why do some economies remain technologically backward even when technologies on the

frontier are available for adoption, virtually freely? If institutions are fragile and property

rights insecure, potential adopters of frontier technologies may be dissuaded if adoption leads to

increased expost conflict over rightful shares to the higher returns. In such a setting, publicly-

funded protection of private property rights may successfully support the adoption of best-

available technologies as a Nash equilibrium. The movement to more-secure property rights

may or may not be welfare-enhancing.
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0.2 Chapter 2 Abstract

In this chapter, valuation of a financial derivative, known as Stock Loan, is addressed when

the underlying asset is subject to risk of bankruptcy. A stock loan is a financial derivative

where the owner of an asset (a share of a stock) can obtain a loan from a lender (usually,

a bank) using that asset as a collateral. The movements of the asset price is modeled to

follow a geometric Brownian motion, with constant drift and volatility. Following the credit

risk literature, risk of bankruptcy is introduced according to both structural and reduced form

approaches. In the structural form modeling, default is introduced following the Black and Cox

(1976) formulation, where the asset is declared as bankrupt as soon as the asset price falls below

a pre-determined lower boundary. Modeling the lower boundary as a deterministic function of

time, a closed form expression for the valuation of the financial derivative is obtained in terms

of the probability distribution of the first passage time of Brownian motion and the valuation of

the Down-and-out barrier option. The pricing formula in the structural form modeling is based

on the celebrated Black and Scholes (1973) framework and therefore, is easy to implement.

As a salient feature of structural form modeling, default time turns out to be a predictable

stopping time. In the reduced form approach, bankruptcy is modeled to occur through a

default intensity which is assumed to be a decreasing function of discounted stock price. The

event of bankruptcy is modeled as a non-predictable phenomenon. In this formulation, the

existence of an optimal exercise boundary is proved, which is of threshold type. This optimal

decision threshold is crucially contingent on the policy variables that are treated as parameters

of the system. We proceed further to use numerical methods to address the sensitivity analysis

of the optimal exercise boundary. The results of our numerical simulation provide further

insights into the linkage between optimal exercise boundary and the policy variables. We find

that optimal exercise boundary is crucially contingent on the effective rate of return (defined as

the difference between interest and lending rate) and exhibits a non-monotone relationship. We

also find an interval where optimal exercise boundary shows a monotone increasing relationship

with an increase in volatility. The sensitivity analysis in the reduced form modeling can be

useful in recommending policy prescriptions in the valuation of mortgage backed securities.



www.manaraa.com

1

CHAPTER 1. Public Provision of Security in an Insecure Property Rights

Environment

1.1 Introduction

The term property rights refers to an owner’s legal right to use a good/asset for consumption

or income generation and also, the right to transfer the good to another party. Property

rights have received pride of place in all analyses of the development (and dominance) of the

market system in modern societies. Over two centuries ago, Adam Smith and other thinkers

expounded on the idea that property rights encourage their holders to develop the property,

generate wealth, and efficiently allocate resources via the market mechanism.1 They noted

that the anticipation of profit from “improving one’s stock of capital” rests on clear delineation

and enforcement of private property rights, which, in turn leads to more wealth and improved

standards of living for all.2

While the above prescription for material progress and prosperity has been around for over

two hundred years, not every country has succeeded in using it to achieve sustained growth

and development. Indeed, in most less-developed and transition economies, institutions aimed

at defining and preserving property rights are woefully fragile, and as such, property rights are

terribly insecure. This insecurity comes at a hefty price – heightened conflict over property and

1A practical application of this principle can be found in the introduction of the Permanent Settlement
System (around 1800) in colonial India. Under this system, the colonizers – the British under Lord Cornwallis,
one of the leading British generals in the American War of Independence – granted proprietarial rights to former
landholders (would-be zamindars) to the land they occupied. This method of incentivisation of zamindars was
intended to encourage improvements of the land, such as drainage, irrigation and the construction of roads and
bridges. The land tax was also fixed in perpetuity. Cornwallis successfully argued that “when the demand of
government is fixed, an opportunity is afforded to the landholder of increasing his profits, by the improvement
of his lands”.

2Besley (1995) investigates the interconnection between investment and land rights using data from Ghana,
when the country was in a state of transition between traditional and modern land rights. His findings for
Wassa, a cocoa growing region where most of the land is owned, was supportive of the idea that “better land
rights facilitate investment”.
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the accompanying dissipation of scarce resources in the creation of effective property rights.3

Our paper studies the consequences of insecure property rights on the mechanics of tech-

nological innovation. The work is motivated by a certain “social resistance” to technological

change that characterizes many poor economies. For example, Platteau (2000, p.200) docu-

ments how fishermen in Congo refused to use a new net technology which was offered to them

at no cost. More generally, it has been documented that economic agents in impoverished soci-

eties often reject superior technologies – technologies that are on the frontier – even when the

cost of adoption appear negligible. In explaining this apparent paradox, Parente and Prescott

(1999) make the convincing case that technological innovation is not a Pareto-superior outcome.

There are economic winners and losers, and the latter have an incentive to block technology

adoption by others because it necessarily influences the expost distribution of wealth. This

view finds prominence in Olson (1982), Mokyr (1990), Krusell et al. (1996), among others.

Linked to this, is the view that post-production conflict is inevitable if the property rights are

not perfectly enforced. Specifically, output is contestable in a society with imperfect property

rights and conflict over the output cannot be settled without expending scarce resources in

“appropriation” (grabbing the production of other agents or defending it from others). In

the last two decades, a growing body of research has tried to explain the consequences of such

conflict and appropriation in the process of development. Almost all of this work models conflict

as a contest in which a non-cooperative game is played between agents to settle the conflict. A

key ingredient of conflict is the use of weapons or defensive means, a composite form of which

is termed “appropriative investment”. Returns of appropriative investments that accrue to an

agent is represented by “technologies of conflict”or “context success functions”.

Continuing in this tradition, Gonzalez (2005) argues that the aforementioned paradoxical

3In recent times, economists have popularized this line of thinking. De Soto (2000) has brought the argument
into a broader public domain. Economic historians such as North (1981), Jones (1986), and Mokyr (2002) have
cited evidence to support this view. There is a growing literature that focuses on the links between the security
of property and economic behavior at the institutional level in a variety of specific institutional settings. For
example Besley (1995), Goldstein and Udry (2008) study the impact of insecure land rights on investment and
productivity in rural Ghana. In a related study Field (2007) finds that issuing of “property titles” in urban Peru
has led to a significant increase in labor supply. Johnson et al. (2002) studies the impact of insecure property
rights on the investment decisions taken by manufacturing firms in post-communist countries when bank loans
were available. A common thread running through these studies is secure property rights facilitates the creation
of wealth.
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choice of inferior technologies can be understood as “a strategic response to the anticipation of

conflict” over the expost distribution of newly-created wealth especially when property rights

over it are insecure. Gonzalez (2005) has in mind a setting in which two agents contemplate

adoption of a superior technology in an insecure property-rights environment. While each

recognize that such adoption would lead to an increase in future output, each is nevertheless

afraid that this newly-created wealth generates an incentive for the rival to engage in a costly

game of predation. The expected predatory response discourages adoption of the superior

technology in the first place, and thus “... poverty becomes the price of peace.” (Bates 2001).4

The upshot of the Gonzalez (2005) analysis is that adoption of the best-available technology is

never sustainable as a Nash equilibrium.

If people are hesitant to adopt superior technologies because of a fear of subsequent conflict,

would some sort of external intervention be beneficial? Would it help, if a third party intervenes

in this conflict by providing some manner of public protection of rights on private property? To

implement this, we introduce a “government” in the framework of Gonzalez (2005). We think

of the government as imposing a non-distortionary tax on the initial endowments of each agent

at the start of their life. The tax proceeds are utilized to finance the hiring of a “guard”. The

guard is simply a public security service whose sole aim is to reduce the effectiveness of each

agents’ predatory activities, without directly interfering in the expost conflict. The posting of

a guard is shown to influence agents’ decisions on allocation of resources to productive and

predatory activities. In sharp contrast to the main result in Gonzalez (2005), we prove that

adoption of the frontier technology by each agent can now be supported as a Nash equilibrium.

We go on to extend the analysis by allowing the government to directly influence the nature

of the expost conflict. In other words, we allow the government to use its tax-financed resources

to alter the existing regime of property rights. Presumably, a government can achieve increased

security of property rights by funding the police, the judiciary, and the corrections systems

better. We find that adoption of the best-available technology by each agent continues to

emerge as a Nash equilibrium. Within this equilibrium, we find that improved property rights,

4Hall and Jones (1999) provide evidence that poor enforcement of property rights can be a serious impediment
to technological progress.
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though growth enhancing, is not always socially optimal from an aggregate-welfare point of

view. 5

The paper is organized in the following manner. Section 1.2 describes the benchmark model

due to Gonzalez (2005). In section 1.3, we introduce the public security of private property and

analyze the equilibrium outcomes. In section 1.4, we endogenize the property rights regime.

Section 4 concludes the paper.

1.2 The model

1.2.1 Physical environment

We consider a two-period model of imperfect security of private property and its impact

on technology choice. The model economy is inhabited by two agents, named R and P (“rich”

and “poor”) – these agents can be thought of either as individuals or collectives (such as tribes,

nation states, and so on). There is a single good and the aggregate endowment of this good in

period 1 is a fixed amount Y. Agent R is endowed with a share p ∈ (1/2, 1] of Y ; correspondingly,

Agent P is endowed with the remaining share, 1 − p. Rights to this property in period 1 are

perfectly secure for each agent. However, property rights in period 2 are not secure, and all

the action in this model derives from this insecurity.

Each agent uses a portion of his property in period 1 and undertakes some productive in-

vestment; the latter, via a production technology, produces consumables in period 2. At the

start of period 1, each agent costlessly chooses a technology from a set of available technologies,

[AL, AH ]. A technology is to be interpreted as a blueprint that transforms investment into

output in the following period. We assume that each agent has access to the same AK pro-

duction technology and that productive investments of the agents are decided independently

of each other. To be specific, productive investment Ki by agent i [i ∈ {R,P}] at period 1

produces output AiKi at period 2 where Ai ∈ [AL, AH ] is the technology choice of agent i.

In a world with secure property rights, the resources available to agent R in period 2 would

5In a somewhat-related study, Gonzalez (2007) analyzes the growth-welfare trade-off in an exogenously-
specified property rights environment. He showed a symmetric equilibrium allocation associated with more-
secure property rights and faster growth can be Pareto dominated by one associated with poorer property rights
and slower growth.
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be ARKR, and that to agent P would be APKP . Not so here. Here, the total amount of

consumables (“common property”) available at the start of period 2 is Y ′ ≡ (ARKR +APKP )

and property rights over Y ′ is insecure, that is, it is subject to pillage and appropriation. This

insecurity prompts agents to invest in appropriative investments that help convert their claims

on production into effective property rights on the common output. Let Xi denote agent i’s

investment in appropriation, and let p′ denote agent R’s share of Y ′; henceforth p′ is labeled

the “appropriation function”. Then,

p ≡ (XR)m

(XR)m + (XP )m
∈ [0, 1] ; m > 0, (1.1)

where (1.1) is a share function – taken as a primitive – capturing the technology of conflict over

claims on future output. Note p′ is increasing in an agent’s own appropriative investment and

decreasing in that of his rival’s. This is the workhorse functional form for the technology of

conflict. For future reference, note that p is symmetric and homogeneous of degree zero in XR

and XP . This last property is analytically convenient and largely accounts for the widespread

use of this functional form in the conflict literature. As an aside, note that resources allocated

to productive investment in period one are not subject to appropriation, only the final output

in period two is. Finally, note that if property rights were perfectly secure, agent R’s share

of Y ′ would be given by ARKR/Y
′; therefore, as long as p in (1.1) deviates from this ratio,

property rights are insecure. For future use, note that p in (1.1) can never approach ARKR/Y
′.

This last observation will make a major appearance in the penultimate section of this paper.

It is instructive to outline a time-line of events. At the start of period 1, each agent chooses

a technology from the aforementioned set of available technologies. Once that is done, and

cognizant of his own technology choice but not that of his rival’s, an agent makes consumption,

appropriation, and productive investment decisions, financing everything from his endowment.

Production activity is then initiated. Agents consume and undertake the planned appropriation

investments. When period 2 arrives, the common production, Y ′, is realized and agents receive

their share which they consume; agent R gets a share p′ and agent P, a share 1− p′. Note that

p′ is determined by past appropriation investments of both parties, as is described by (1.1).
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The resource constraints in period 1 can be written as

pY = C1R +XR +KR, for i = R (1.2)

(1− p)Y = C1P +XP +KP , for i = P (1.3)

where C1i, i ∈ {P,R} is consumption by agent i in period 1. The second period constraints are

C2R = p′(ARKR +APKP ), for i = R (1.4)

C2P = (1− p′)(ARKR +APKP ), for i = P . (1.5)

where C2i, i ∈ {P,R} is consumption by agent i in period 2.

The description of the physical environment is complete once preferences are specified.

We assume that agent i has preferences described by the separable utility function, Ui ≡ ln

C1i + β lnC2i, β > 0.

1.2.2 Equilibrium

The aforediscussed time-line of events suggests the following characterization of the game.

Period one is characterized by two stages, where in each stage, agents act non-cooperatively

to maximize their payoffs without any information on their rivals’ strategies. Therefore, we

are faced with a two-stage game, where at each stage, agents play a simultaneous-move game,

and the outcome of the first stage is not revealed before the actions of the second stage are

taken. To find a reasonable solution, we look for the set of subgame-perfect equilibria. In

other words, for any choice of technology at stage one, we first find the optimal consumption

and investment strategies for each agent which are mutual best responses to each other. These

optimal responses are solely a function of the technology choices made in stage one. Then, we

incorporate these optimal decisions in the agents’ utility maximization problem and find the

set of technologies in stage one that produce non-cooperative optima for each agent.

Consider the problem faced by agent R at stage two of period 1. At this point in the game,
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agent R knows AR; he takes AP , XP and KP as given, and solves the following problem:

max UR ≡ lnC1R + β lnC2R

subject to

pY = C1R +KR +XR,

p′Y ′ = C2R,

p′ =
(XR)m

(XR)m + (XP )m
,

and Y ′ = ARKR +APKP .

The interior optimality conditions for agent R are given by the following equations:

1

C1R
= β

(XR)m

(XR)m + (XP )m
AR

1

C2R
, (1.6)

AR
ARKR +APKP

=
(XP )m

(XR)m + (XP )m
m

XR
. (1.7)

Equation (1.6) is a standard intertemporal Euler equation equating the marginal rate of

substitution (MRS) of consumption between the two time periods with the marginal rate of

transformation (MRT). In a standard model with perfect property rights, the MRT for agent R

would simply be AR; here, because of insecure property rights, it is p′AR. The second condition,

(1.7) reflects the equality of marginal returns across different the two types of investment

activities. An unit of resource can be invested either in productive or in appropriative activities.

In equilibrium, these avenues should generate the same return.

Analogously, the reaction functions for agent P are given by

1

C1P
= β

(XP )m

(XR)m + (XP )m
AP

1

C2P
, (1.8)

AP
ARKR +APKP

=
(XR)m

(XR)m + (XP )m
m

XP
. (1.9)
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We can use the symmetry of the reaction functions for the two agents to write (AR/AP ) =

(XP /XR)m+1 and use in (1.1) to get

p′ =
1

1 +
(
AR
AP

) m
m+1

. (1.10)

Notice how the appropriation function in (1.1) is transformed to depend solely on the ratio of

the technology choices of both agents.

The above formulation of p′ highlights the possibility of wealth-ranking reversal in this setup.

To see this, suppose the technologies adopted satisfy AR > AP (i.e., suppose the initially-

wealthier agent adopts the superior technology). Then, (1.10) makes clear that p′ < 1/2 is

possible even when p > 1/2 was true. In other words, a wealth-ranking reversal is possible. The

fact that there is a scope for redistribution of wealth, from the wealthier and more productive

agent to the poorer one, should not come as a surprise. After all, the agent choosing the superior

technology has a higher opportunity cost of investing in appropriative activities, which in turn

give him a comparative advantage (relative to the other agent) in production. The optimal

allocation of saving between different investment activities (or, the equalization of marginal

return across productive and appropriative activities) implies that the agent invests more in

production and cut back on appropriative investments, and thus end up with less share of

future output.

Using (1.6)-(1.10), it is possible to derive the optimal allocation of resources to consumption

and appropriation in terms of the stage-one technology choices of both parties. The optimal

choices for agent R are given by

C1R =
AP
AR

C1P =

[
(p+ (1− p)APAR )Y

]
β(1 +m) + 2

, (1.11)

XR =

 1(
AP
AR

) m
m+1

+ 1

 mβ
[
(p+ (1− p)APAR )Y

]
2 + β(1 +m)

, (1.12)
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and

C2R =
β

1 +
(
AR
AP

) m
m+1

.
[(pAR + (1− p)AP )Y ]

2 + β(1 +m)
. (1.13)

Analogous expressions for agent P are given by

C1P =
AR
AP

C1R =
AR
AP

[
(p+ (1− p)APAR )Y

]
β(1 +m) + 2

, (1.14)

XP = XR

(
AR
AP

) 1
1+m

=

(
AR
AP

) 1
1+m

 1(
AP
AR

) m
m+1

+ 1

 mβ
[
(p+ (1− p)APAR )Y

]
2 + β(1 +m)

, (1.15)

and

C2P =

(
AR
AP

) m
1+m

C2R. (1.16)

If the income distribution is highly unequal, we may end up at a corner solution where the

poorer agent does not contribute anything to productive investment and invests only in appro-

priation. Similarly, the richer agent may have absolute advantage in appropriation. Implicitly

then, we assume that the initial distribution of income is not very skewed i.e., p is not very

close to 1.

From the expressions of (1.11), (1.13), (1.14), (1.16), it is evident that if the initially-

wealthier agent adopts a superior technology, he enjoys less consumption in both periods than

the poorer agent. Also note that the equilibrium share of output is less for the relatively more-

productive agent. These results are invariant to whether the more-productive agent is initially

richer or not. This is because equilibrium allocation of resources are determined by comparative

advantage. For example, when AR > AP , agent R has a comparative advantage in production

and poor in appropriation. From standard trade theory, it follows that agent P should invest

relatively more in appropriation and thus enjoy higher second-period consumption i.e. C2P >

C2R. On the other hand, agent P is reluctant to sacrifice current consumption to increase the

size of the pie as he is relatively less productive, and therefore, he consumes more in the first

period i.e., C1P > C1R. Similar arguments hold when AR < AP .

It remains to incorporate these optimal decisions, (1.11)-(1.16), in the agents’ utility max-
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imization problem and compute the technology choices (AR, Ap) in stage one that produce

non-cooperative optima for each agent. In other words, we compute UR as a function of AR

(given Ap) and Up as a function of Ap (given AR). These represent the mutual best-responses.

A pure strategy Nash equilibrium is a fixed point of these best-response functions that is con-

sistent with positive levels of productive and appropriative investments, and consumption in

each period, by both agents.

Proposition 1. (Gonzalez, 2005) If p is sufficiently close to half and AH

AL
→ 1, then a pure-

strategy Nash equilibrium exists.
(
AR = AH , AP = AH

)
is not a pure-strategy Nash equilib-

rium, i.e., the equilibrium technology profile cannot involve each agent adopting the best avail-

able technology.

Why might agents not wish to adopt the best available technology even when it is costlessly

available? In this environment of insecure property rights, the answer lies in the anticipation of

future conflict. While adoption of a better technology by an agent raises tomorrow’s common

output, the very increase in tomorrow’s pie elicits a harmful response from his rival (in the form

of an increase in appropriative investment), and this dissuades the agent from adopting superior

technologies in the first place. More specifically, the optimality conditions imply that agents

allocate resources by equating marginal returns from the two types of investment activities.

It follows that adoption of a superior technology raises the opportunity cost of appropriative

investments for the adopter, inducing him to shift resources from appropriative to productive

activities. Ceteris paribus, this raises future common output. On the flip side, the adoption

of a superior technology lures his opponents to specialize in appropriation – appropriative

investments act as strategic substitutes – thereby increasing the “ex-post tax” on the returns

to adoption. The upshot is that choosing to adopt a superior technology confers a strategic

disadvantage in the subsequent distribution of wealth.

The starting point of our analysis is this striking result in Gonzalez (2005): people are

hesitant to adopt superior technologies because of the fear of subsequent heightened conflict.

This presents a prima facie case for some sort of external intervention. Would it help, if a

third party, say, a government, intervenes in this conflict by providing some manner of public
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protection of rights on private property? In the next section, we take up a slice of this issue.

1.3 Guard posting: introducing public security

1.3.1 Modified environment

To implement the idea discussed above, we introduce a third party, called “government”

in the framework of the benchmark model. We think of the government as imposing a non-

distortionary tax on the initial endowments of each agent at the start of their life. The tax

proceeds are utilized to finance the hiring of a “guard”. In terms of the model economy, the

guard is simply a public security service whose sole aim is to reduce the effectiveness of each

agents’ appropriative investments by a constant amount. Since agents’ share of future output

depends on their effective appropriative investments, the presence of a guard, in effect, creates

a threshold below which all appropriative investments are rendered ineffective. This influences

agents’ decisions on allocation of resources to various activities, which in turn, affects their

marginal returns. The question at hand is: can the presence of a guard induce a reallocation

of resources in such a way that adoption of the best-available technology by each agent evolves

as a Nash equilibrium? 6

As discussed above, assume each agent is required by law to pay as a tax, a fixed proportion

(τ) of his inherited wealth. Since inherited wealth is exogenously-specified – pY for agent R

and (1− p)Y for agent P – the tax is non-distortionary. We denote the total tax revenue

by G, where G = τY. The government uses the tax proceeds to post a guard whose only

job is to equally reduce the effective amounts of the appropriative investments of each agent.

Specifically, if Xe
i is the effective appropriation investment for agent i, then Xe

i ≡ Xi−G where

Xi is the corresponding investment made by agent i in the benchmark model. The technology

of conflict, the analog of (1.1), is redefined in the following manner:

6By posting a guard, the government can act as a more-effective deterrent against one party capturing more
of the final output than is due to that party. A question that legitimately arises at this juncture is, why does
the government, via the posting of a guard, get involved in this conflict in the first place? Presumably, the
government cares about improving property rights. A fuller discussion of this issue is presented in Section 1.4
below.
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p′G =
(Xe

R)m

(Xe
R)m + (Xe

P )m
. (1.17)

The new formulation, which looks a lot like (1.1), maintains the properties of symmetry

and homogeneity of degree zero in effective appropriative investments; this keeps the model

analytically tractable. This formulation requires that each agent invests at least an amount G

– the threshold – to get a positive return from appropriative activities. Since τ can be quite

small, the threshold – the restriction that Xe
i > 0 has to hold – may not be too onerous for

the agents. What is important to note is that diminishing returns in appropriative investments

imply that the marginal effect of an extra unit invested in appropriation (over and above the

threshold) is much lower than in the benchmark model; additionally, the marginal return on

appropriative investments is lower than the marginal utility from consumption or the return to

productive activities.

It is evident that compared to the benchmark model, the qualitative changes in this sec-

tion are the imposition of a tax in the first period and the modification of the share func-

tion/technology of conflict. The sequence of activities and the information available to each

agent at each point of time are exactly the same as that in the baseline model. Therefore, we

proceed exactly as before to obtain the set of sub-game perfect Nash equilibria (SPNE).

1.3.2 Equilibrium

Analogous to (1.6)-(1.7), the interior optimality conditions for agent R are given by:

1

C1R
=
βp′GAR
C2R

, (1.18)

and

m(XP −G)m

(XR −G){(XR −G)m + (XP −G)m}
=
AR
Y ′

. (1.19)

The first condition, (1.18), is the familiar inter-temporal Euler equation that equates the

marginal utility of an unit of consumption across periods. For agent R, an unit of consumption

forgone today and invested in the productive technology produces AR units of future output.
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Since property rights are insecure, agent R gets to consume only his effective share, p′GAR. The

second optimality condition requires that the marginal returns from both types of investment

activities – productive and appropriative – be equated in equilibrium.

It is easy to check that (1.10) continues to hold in this reformulated environment, i.e.,

p′G =
1

1 +
(
AR
AP

) m
m+1

(1.20)

holds. Analogous to (1.11)-(1.16), we now have

C1R =
Y
[(
p+ (1− p)APAR

)
(1− τ)−

(
1 + AP

AR

)
τ
]

β(1 +m) + 2
, (1.21)

C2R =
β

1 +
(
AR
AP

) m
m+1

.
Y [(pAR + (1− p)AP )(1− τ)− (AR +AP )τ ]

2 + β(1 +m)
, (1.22)

C1P =
Y
[(

AR
AP
p+ (1− p)

)
(1− τ)−

(
1 + AR

AP

)
τ
]

β(1 +m) + 2
, (1.23)

and

C2P =
β
(
AR
AP

) m
m+1

1 +
(
AR
AP

) m
m+1

.
Y [(ARp+ (1− p)AP )(1− τ)− (AR +AP )τ ]

2 + β(1 +m)
. (1.24)

Additionally,

XR =

 1(
AP
AR

) m
m+1

+ 1

 mβ∆

2 + β(1 +m)
+ τY, (1.25)

and

XP =

 1(
AP
AR

) m
m+1

+ 1

 mβ∆

2 + β(1 +m)

(
AR
AP

) 1
m+1

+ τY (1.26)

hold where ∆ ≡
[(
p+ (1− p)APAR

)
(1− τ)Y −

(
1 + AP

AR

)
τY
]
. It is clear from (1.25)-(1.26) that

Xe
R and Xe

P are positive.

What are the main margins on which all the action in this model rests? First, at the

margin, a higher tax rate reduces disposable income generating a first order negative effect on
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utility. However, there may arise a countervailing positive effect since the proceeds from the

tax are used to employ a guard, whose actions may help secure property rights, and thereby

encourage better technology adoption. How might this happen? Recall that the presence of a

guard creates a threshold below which all appropriative investments are rendered ineffective.

As a result, the marginal effect of an extra unit invested in appropriation (over and above the

threshold) is considerably lowered, raising the corresponding return from productive activities.

Both agents now have an incentive to respond to these favorable returns by adopting better

technologies. The whole thing turns on the following tension: does the presence of a guard

reduce the anticipation of future conflict by so much that the benefit to agents from adopting

superior technologies outweighs their contribution to the financing of the guard in the first

place? The next proposition argues that for a range of tax rates, the answer may be in the

affirmative.

Proposition 2. (Guard-posting) If p → 1/2 and AH

AL
→ 1, a pure strategy equilibrium with

positive investment in productive activities exists for τ ≤ τinv. Moreover for τ ∈ [τH , τinv],(
AR = AH , AP = AH

)
can be achieved as a Nash equilibrium technology profile.

The definitions of τinv and τH – all in terms of underlying parameters – can be found in

the appendix. Proposition 2 is the central analytical result of our paper. It argues that under

the same sorts of parametric restrictions imposed in Proposition 1, a publicly-financed guard

can significantly improve the equilibrium technology choice. In particular, [AH , AH ] can now

be supported as a Nash equilibrium, something that was not possible in Proposition 1 or in

Gonzalez (2005). 7

1.3.2.1 Welfare Analysis

As discussed earlier, there is a tension between utility losses from lower disposable income

when young and possible welfare gains from superior technology adoption in the presence of

7A few words about Proposition 2 are in order. When the tax rate lies within the interval [τH , τinv], each
agent’s best response is to choose either the best or the worst available technology. That is, any equilibrium
technology profile must be situated in the boundaries of the set of available technologies. If the tax rate lies
outside the interval [τH , τinv] then emergence of an interior equilibrium in technology choice is possible. In the
baseline model, this was never a possibility.
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a guard. On net, can we say anything about overall welfare levels with and without public

provision of security? To that end, we posit a Benthamite social welfare function:

SWF ≡ UR + UP . (1.27)

Since there are multiple equilibria possible both in the benchmark and in the guard-posting

models, indeed the set of equilibria are different, the choice of which equilibria to compare

becomes critical. Here we choose to compare social welfare across two symmetric equilibria,(
AL, AL

)
in the benchmark model and

(
AH , AH

)
in the guard-posting model.

Corollary 1. If (AH , AH) and (AL, AL) are equilibrium technology profiles in the guard-posting

model and the benchmark model respectively, then aggregate social welfare is higher in the former

equilibrium if the following parameter condition holds:

AH

AL
≥
(

1

(1− 3τ)2(β+1)

) 1
2β

.

Before we close this section, it would be useful to summarize our findings thus far. Gonzalez

(2005) argued that a primary reason for technological backwardness is insecurity of property

rights. If agents anticipate increased conflict from adoption of a superior technology, they

may choose not to. The best-available, and yet free, technologies may never be adopted, with

serious consequences for growth and welfare. We introduced the notion of public security of

private property rights. In our setup, a guard is posted by the government with the sole aim

of reducing the effectiveness of the appropriative investments of each agent. We find that the

best-available technology can now be supported as a Nash equilibrium. This new equilibrium

may also exhibit superior welfare.

In the environment studied thus far, the extent of involvement of the government in the

post-production conflict was limited to posting a guard. All the guard did was thwart the

appropriative activities of each agent, much like a policeman would. As an intuition-building

exercise, this thought experiment was useful. What happens if the government takes on a more

direct, proactive role in the post-production conflict, and is not restricted to merely impeding
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the appropriative activities of agents?

1.4 Improving property rights

In this section, we allow the government to utilize the tax proceeds to directly influence the

technology of conflict with a view to improving the security of private property rights. This is

achieved via the following reformulation of the conflict technology:

p′e =
xmθR (ARKR)1−θ

xmθP (APKP )1−θ + xmθR (ARKR)1−θ , θ ∈ [0, 1]. (1.28)

In this formulation, p′e denotes the share of second-period output that accrues to agent R.

As is clear from (1.28), p′e reduces to p′ (see (1.1) in the benchmark model) when θ = 1 and

to ARKR/Y
′ when θ = 0. In other words, the technology of conflict in (1.28) straddles two

extremes, the insecure property-rights regime from the benchmark model and an environment

of perfect property rights (where agent R receives his legitimate share, ARKR/Y
′).

We posit that θ is a choice variable for the government albeit not a costless choice. Real

resources are diverted to enhance property rights. Specifically, the government can influence

θ directly by spending G where θ ≡ Φ(G), and G = τY. Furthermore, Φ(0) = 1, Φ(G∗) = 0,

and Ω′(G) < 0. If the government wishes to improve property rights, it raises τ (and hence, G)

and uses the revenue to reduce θ.8 In the limit, as G approaches a critical level, G∗, a perfect

property rights regime is established. In a laissez-faire regime, the government takes no part in

post-production conflict and sets G = 0. This establishes the polar opposite regime of insecure

property rights. Henceforth, θ measures the exact level of insecurity of agents’ claims to private

property.

The rest of the environment is exactly as it is in the benchmark model. Analogous to

8This action could be interpreted as improving funding for the police and the judiciary at large.
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(1.6)-(1.7), the interior optimality conditions for agents R and P are given by

1

(1− τ)pY −XR −KR
=

βAR
ARKR +APKP

+
(1− θ)Xmθ

P (APKP )1−θ

[Xmθ
P (APKP )1−θ +Xmθ

R (ARKR)1−θ]KR
(1.29)

1

(1− τ)pY −XR −KR
=

mθXmθ
P (APKP )1−θ

[Xmθ
P (APKP )1−θ +Xmθ

R (ARKR)1−θ]XR
, (1.30)

and

1

(1− p)(1− τ)Y −XP −KP
=

βAP
ARKR +APKP

+
(1− θ)Xmθ

R (ARKR)1−θ

[Xmθ
P (APKP )1−θ +Xmθ

R (ARKR)1−θ]KP

(1.31)

1

(1− p)(1− τ)Y −XP −KP
=

mθXmθ
R (ARKR)1−θ

[Xmθ
P (APKP )1−θ +Xmθ

R (ARKR)1−θ]XP
, (1.32)

respectively. The equilibrium technology profile involves solving the above system of equations

– (1.29)-(1.32) – for KR,KP , XR and XP , where p ∈ (1/2, 1], β ∈ [0, 1], τ ∈ [0, 1], m ∈ [0, 1],

θ ≡ Φ(G) ∈ [0, 1], and Y > 0. The nature of non-linearity in the system of equations severely

restricts the scope for analytical solutions. We resort to a numerical analysis.

1.4.1 Numerical Analysis

The model economy, and hence, the system eqs. (1.29)-(1.32), has undergone a substantial

change over the model described in Section 1.2. There, as Proposition 1 had established, all

Nash equilibria lay at the boundary of the available technologies set, i.e., either AP or AR

could take the boundary values AH or AL but not an interior value. No such guarantees are

available to us in the system, (1.29)-(1.32). Multiple, possibly interior, equilibria are clearly

possible here. Since we are ultimately interested in studying changes in θ, matters could get

tricky especially if a change in θ takes us from one equilibrium to another. To keep the analysis

in this section comparable with Sections 1.2 and 1.3 below, we will restrict the analysis to a

single Nash equilibrium,
(
AR = AH , AP = AH

)
, even though many others, possibly even a

continuum, are possible. Within the confines of this single equilibrium, the one corresponding

to both parties choosing the frontier technologies, we will ask, how do various variables of

interest vary as θ changes? Specifically, as θ falls (i.e., property rights become more secure),



www.manaraa.com

18

how does growth, inequality, and welfare respond? The question uppermost on our mind is, is

government-funded increased security of property rights a good idea always?

We develop the following numerical scheme in order to simulate the system, eqs. (1.29)-

(1.32), so as to analyze the effect of property rights improvement (through effective government

intervention) on relevant choice variables. Since the model economy is quite stylized, the

numerical exercise below is not to be understood as a calibration exercise, rather the exploration

of a particular equilibrium using numerical methods.

We begin by specifying the values of the parameters, the range of tax rates, and the set from

which the technology is chosen: τ ∈ (0, 20%), Y = 100, β = 0.8, Ai ∈ [AL = 18.9, AH = 20] ,

m = 0.5, p = 0.6, Φ(G) ≡ 1 − (G)α

Kα with K =, and α = 0.5. To stay in line with Propositions

1-2, we choose
(
AH/AL

)
≈ 1 and p close to 1/2. Clearly, Y and β are scale parameters and

are easily varied without any change in the qualitative properties. The tax rate is kept in

a reasonable range of under 20% (indeed, much of the action below happens for tax rates

below 10%). α represents the elasticity of effective property rights with respect to government

spending.

In steps 1 and 2 below, we summarize the algorithm that we use to identify the set of tax

rates that supports the choice of best available technologies as a Nash equilibrium for the poor

agent. A similar scheme is developed for the rich agent. Finally, in step 3, we find the interval

of tax rates that supports the choice of frontier/best-available technologies for both agents as

a Nash equilibrium.

1. Step 1 : We start by making a grid for τ (the tax rate ) and AP (the technology choice

of the poor agent). Given an initial choice of τ at the first grid point, we perform

the following analysis: We fix AR at its highest possible level, AR = AH = 20, and

choose the first grid point of AP = AL = 18.9. For the given choice of parameters,

we simultaneously solve the above-discussed system of non-linear equations (using the

Matlab in-built function “simulnonlinear”) to get the optimal values of C1R, C1P , XP

and XR. Using these, we compute KR, KP , C2R, and C2P . Next, we evaluate indirect

utility of agent P, UP ≡ lnC1P + β lnC2P , which depends on the initial choice of τ ,
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AH = 20 and AP = 18.9. Keeping the initial choice of τ unchanged, we change AP along

the grid, holding AR fixed at AH to see how UP changes with AP . This process is iterated

twenty times. For the initial choice of τ , the indirect utility curve is plotted as a function

of AP for every iteration.

2. Step 2 : To check whether agent P has an incentive to choose the best possible technology

when agent R has done so, we compute ∂UP /∂AP at AP = AR = AH for this choice of τ .

If the slope is positive, we assert that this tax rate supports the best available technology

adoption for the poor and consequently, record the value of τ . A negative slope implies

an incentive on the part of agent P to deviate from the best technology choice given agent

R has chosen it. In that case, we reject that value of τ and proceed to repeat the same

exercise for the next point on the grid. This process is repeated for the entire grid of

τ and record those τ for which the aforementioned slope is positive. Denote this set by

S1 = [τ1, τ2].

3. Step 3: An analogous exercise is performed for agent R and a set S2 = [τ3, τ4] is found.

We denote S = S1 ∩ S2 as the range of tax rates that supports {AH , AH} as the Nash

equilibrium. In our case, S = [0.0020, 0.1001].

The graphical representations summarizes the central findings of the numerical analysis. An

intuitive explanation of the underlying dynamics is presented subsequently, in the discussion

section.
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1.4.2 Discussion

Here, we study how an improvement in property rights shapes optimal resource allocations

when the best-available technology has already been adopted. Intuition suggests that within

this interval, enhanced security of property rights should induce larger productive investments

and thereby foster economic growth. Would this benefit come at the cost of lower welfare? Are

more secure property rights always desirable? If the government could ensure perfectly secure

property rights, would it?

The figures above summarize the movements in resource allocation and other important

economic indicators with improvements in property rights. When 1−θ increases, property rights

improve, productive investment for both the agents go up and appropriative activities fall. It is

evident from the figures that agents sacrifice first period consumption along with appropriative

investment and allocate the resources towards productive investment in an anticipation of

higher second-period consumption. However, the rates at which these changes occur varies

significantly across the two agents. Growth of output shows a steady positive relationship with

improvement in property rights, which can be logically concluded from the effect on capital

accumulation. However, effect on social welfare is non-monotone.

The economic rationale behind the movements in the resource allocation is intuitive and

foreseeable from the nature of the problem and the framework considered. The central result

here is the growth-welfare trade-off. An improvement in property rights and institutional ar-

rangement induces a reallocation of resources towards productive investment at the expense of

appropriation and first period consumption. These effects can be traced back through different

avenues for both the individuals and the reason can be attributed to their initial comparative

advantage and individual resource allocations. For the poor agent, who had a comparative

advantage in appropriation, return from productive investment increases unambiguously which

in turn shifts resources towards production form appropriation and current consumption. For

the initial rich, this reallocation of resources results from a decrease in the return from appro-

priation. The effect of improved property rights on the return from production for the rich

agent is ambiguous. However, it is insightful to note that, this is a composite of a direct effect
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of θ and an indirect effect of θ on p′ on the return from the productive activities. Similar

effects work for the return from appropriation for the poor agent. From the figures, it is clear

that investment in production remains the more lucrative option although the rate of capital

accumulation varies significantly with improvement in property rights. This is apparent from

the curvature of the capital investment curve which is initially increasing and convex and there-

after, concavity sets in. This concavity is a result of diminishing marginal return, which plays

a crucial role in explaining the growth welfare trade-off.

In a Benthamite definition of welfare, both agents are treated equally. In our framework,

that simply means the direction of movement in welfare results from the interaction between

current and future consumption. Initially, when property rights improves, agents sacrifice ap-

propriative investments and first period consumption in an anticipation of increased second

period consumption. Since capital is accumulated at a rapid pace, this anticipation is fulfilled

and consequently, we obtain an increasing trend in the welfare. This process continues until we

reach a critical value of property right parameter θ, beyond which increase in future consump-

tion is outweighed by the fall in current consumption. This effect can be justified along the

following lines: after significant amount of productive investment is undertaken, diminishing

returns set in. Though agents still keep reallocating their resources towards production, the

increase in second period consumption fail to dominate the loss in utility and thus welfare be-

gins to exhibit a steep decline. In other words, enhanced security of private property promotes

productive investment and thus fosters economic growth, which might necessitate a sacrifice in

current consumption. The trade off between growth and welfare is central to the policy analysis

of this research. An improved property right environment (generated by effective government

intervention) that fosters economic growth might not be optimal from a welfare point of view.

1.5 Conclusion

We have considered the role institutions of property rights and conflict management can

play in both achieving prosperity and mitigating conflict in developing countries. In the first

half of our paper, we consider a scenario where public-funded protection of private property

rights may successfully support the adoption of best-available technologies as Nash equilibrium.
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Such a scheme may even be welfare enhancing. Here the government’s role in post production

conflict is limited to ” posting a guard” who thwarts the appropriative activities each agent

much like a policeman Next we try to answer a more pertinent question: what happens if

government takes on a more direct, proactive role in post-production conflict? Basically we

endogenize the property rights by introducing a new formulation of the conflict technology,

where government can explicitly intervene in the existing level of property rights by choosing

the tax rate. We allow the government to utilize the tax proceeds to directly influence the

technology of conflict with a view to improve the security of private property. With in this set

up, we study how an improvement in property rights shapes optimal resource allocations when

the best-available technology has already been adopted. This addresses a fundamental question.

When the government has the option to choose a tax rate that ensure perfect property rights,

is that always desirable? Would such a choice of tax rate be always welfare enhancing? We

show that there exists an interval of taxation such that an increase in property security leads

to a decrease in welfare. From a policy perspective this surprising result calls for a caution

in recommending improved property rights enforcement, particularly when such improvements

are to be made incrementally in middle-income countries.
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CHAPTER 2. Stock Loans Subject to Bankruptcy

2.1 Introduction

A stock loan or a security loan is a security based lending arrangement where an owner of

an asset can borrow money from a lender using the asset as a collateral. The terms of the loan

are governed by a “securities lending agreement”, which requires that the borrower provides

the lender with collateral, in the form of cash, government securities, or a letter of credit of

value equal to or greater than the loaned securities. By construction, the stock loan provides

the borrower with the opportunities to create liquidity today from their equity position with-

out selling and hedge downside risk. Moreover, this financial instrument also minimize the

impact of short term volatility and thus provide significant potential profit from future stock

appreciation (each of the concepts will be explained subsequently). For the specific reasons,

the stock loan has become a very popular financial instrument and according to the industry

group ISLA, in the year 2007 the balance of securities on loan globally exceeded 1 trillion.1

In the context of a less developed country perspective, high degree of volatility of asset prices

makes such a security based arrangement more risky as well as lucrative at the same time.

A significant unutilized potential and vulnerability to the new information makes the asset

prices much more volatile, making the possibility of financial gain wider. On the flip side, high

degree of volatility also makes default events and bad loans more probable. In this paper, we

incorporate the risk of bankruptcy in the valuation of stock loans to give the analysis a realistic

flavor as well as to widen applicability from the policy perspective.

To fix the idea of stock loans in a model economy, let us consider an economy consisting of two

entities, a borrower (the client) and a lender (a bank). The investment options in this economy

1Please refer to the article on “Securities lending”in Wikipedia, The Free Encyclopedia and the reference
therein of “An introduction to securities lending”, 1 August, 2005, Executive Summary, Page 8.
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are limited to a risky asset (a stock), and a safe asset (a bond or, equivalently, a bank account).

The client owns one share of the stock as an asset and obtains a loan from the bank using the

share as a collateral. The bank charges the lending interest rate on the principal. The terms

of the contract are such that the agent may choose to regain the stock at any point of time by

paying the principal and accumulated interest or else, he may choose to surrender the stock,

instead of repaying the loan. Such a loan is called a stock loan or a security loan. A stock

loan, by construction, allows the client to achieve a variety of objectives. Most importantly, it

serves as a hedge against market downturn. As it is evident from the construction, a rational

agent will choose to regain the stock only if the stock price exceeds the principal and the ac-

cumulated interest. In any other scenario, the best response of the client is to forfeit the stock

instead of repaying the loan. Therefore, maximum loss incurred by the client is the initial price

of the stock less the loan principal. On the other hand, the client has unlimited potential of

gaining money, resulting from a significant increase in the stock price. If the stock price goes

up, the client repays the principal plus the interest and keeps all the surplus. At this point, it

is illuminating to mention the analogy of the model scenario with real world mortgage finance.

Investing money in the purchase of a durable asset (for example, a house) financed by mortgage

payments essentially gives rise to similar situation when the calculated payments are made on

a monthly basis for a stipulated period of time. At any point, the borrower can decide to stop

the stream of payment and the financial institution seizes the borrower’s ownership right over

the asset forever. Thus we note that the framework considered here is quite general and can

represent real world mortgage financial issues with minor modification.

The problem of stock loans, precluding the risk of bankruptcy, resembles to an option val-

uation of the American type. From the general equilibrium perspective, it is an optimization

problem from both lenders and borrowers point of view. To elaborate, lender’s problem is to

maximize the expected profit subject to the incentive compatibility and individual rationality

constraints. Also, in a model with more than one agents, the problem of adverse selection

needs to be incorporated in the lender’s optimization problem. In this simplified framework,

the lender has to decide the optimal amount to lend so that it maximizes the expected payoff.
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The optimization problem faced by the lender is out of the scope of this research and therefore,

not addressed here. Problem faced by a rational borrower is crucial in the valuation of such a

financial instrument. Payoff accrued to borrower is simply the difference between the current

stock price and interest accumulated loan amount. Though the payoff is positively related

with the stock price, waiting has a cost in terms of accumulated interest payment. Facing the

tradeoff, the most crucial question from the client’s point of view is when is the optimal time

to regain the stock so as to maximize the present value of the discounted expected payoff. In a

partial equilibrium analysis, where the loan amount is taken as given to the agent, the problem

is to find the optimal time to exercise the option. A reasonable characterization of the optimal

time require that agent is cognizant and well informed about the decision to exercise when the

time arrives. In mathematical language, the problem is to find an optimal stopping time. In

a stochastic environment, where stock price is modeled as a stochastic process, this problem

indeed is to find an optimal exercise boundary. Intuitively, at every point in time, the agent is

faced with a choice, whether to exercise the option or to wait a period longer. Waiting has its

cost in terms of accumulated interest payment, coupled with expected future gain from appre-

ciation of asset price. The problem is essentially to find an optimal stopping time to exercise

the financial instrument so as to maximize the present value of discounted expected payoff.

Valuation of stock loans without the risk of bankruptcy is addressed in Xia and Jhou (2007).2

In this paper, the valuation of stock loan is addressed when the underlying stock is subject

to risk of bankruptcy. Bankruptcy is a legally declared inability or impairment of ability of an

individual or organization to pay its creditors. In other words, it is the condition of a legal

entity that does not have the financial means to pay their incurred debts. Modeling asset prices

as stochastic processes addresses issue of realism of the research and to this end, introducing

risk of bankruptcy is a realistic generalization. Highly volatile assets are sensitive to the eco-

nomic and political perturbations which in turn causes significant unprecedented fluctuations

in asset prices. Asset prices, such as stock or house prices, may very well be subject to the

2In their formulation, the problem reduces to evaluating an American call option with a time dependent
strike price. It turns out that the aforementioned problem is not a straightforward adaptation of its constant
strike price counterpart. The authors use a probabilistic approach to solve the valuation problem.
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risk of bankruptcy or sudden devaluation due to market downturn. A model that precludes

bankruptcy, by construction, rules out the possibilities of such events in deriving the optimal

stopping time and thus deficient in terms of practical applicability. At the same time, modeling

bankruptcy is at the heart of entire credit risk literature which has wide practical applications.

A point is worth mentioning at this point. Having the option to buy or exercise but not the

obligation is a defining characteristic of financial options and absolutely uncorrelated to the

event of bankruptcy. This distinction will be much more transparent upon the introduction of

the details of bankruptcy modeling.

In credit risk literature, there are two fundamental approaches to introduce the risk of de-

fault in pricing and hedging financial securities. These two approaches differ basically in terms

of modeling the information available at the different point in time. These models are often

viewed as competing (see Bielecki and Rutkowski, 2002; Rogers, 1999; Lando, 2003; Duffie,

2003), and there are differences in opinion among the professionals and academicians regarding

the supremacy of one over another (see Jarrow et al., 2003, and references therein). Before

getting into qualitative difference and comparison, let us first present a brief overview and

defining characteristics of both the modeling approaches. The first approach originated from

the seminal work of Black and Scholes (1973) and Merton (1974), which is broadly termed as

structural approach. In the original formulation of Merton (1974), default of a bond happens

only if the borrower is unable to pay the debt in full at the time of maturity. Clearly, in

Merton’s framework, default can only happen at the time of maturity. A basic extension of the

Merton (1974) model is due to Black and Cox (1976), where the model allows event of default

to occur prior to the maturity of the bond. The central idea governing the event of bankruptcy

in this formulation is, the asset is declared to be bankrupt the first time asset price hits a

pre-determined lower boundary. The boundary, which is a common knowledge between both

the parties, is modeled as a deterministic function of time. In modeling the lower boundary,

some functional form has been preferred over others mainly because of the analytical conve-

nience, which will be explained in greater detail in the model section. This approach assumes

complete knowledge of a very detailed information set and the default event is modeled as a



www.manaraa.com

29

hitting time of a predetermined barrier. Consequently, the information assumption implies that

firm’s default time is predictable. Nonetheless, this approach is intuitive, relies mostly on the

framework of the celebrated Black and Scholes (1973) analysis and hence has wide applicability.

In the first part of our research, we compute the valuation of stock loan subject to the risk of

bankruptcy according to the Black-Cox (1976) specification.

The structural form modeling approach, though intuitive and widely applicable, face se-

vere criticism on the grounds of predictability. The second approach, reduced form models,

introduces bankruptcy as a non-predictable or inaccessible phenomenon. Reduced form mod-

els originated with Jarrow and Turnbull (1992). Subsequently, Jarrow, Lando and Turnbull

(1995), Duffie and Singleton (1999), and Hull and White (2000) present detailed explanations

of several well known reduced-form modeling approaches. According to Jarrow and Protter

(2004), key distinction between structural and reduced form models is not in the characteristic

of the default time (predictable versus inaccessible), but in the information set available to

the modeler.This approach assumes the event of default is driven by a default intensity that

is a decreasing function of the underlying stock price. The intensity function measures the

conditional probability of default in an infinitesimal amount of time. The intuition behind

modeling of the intensity function can be put forward as higher the stock price is less probable

the stock is to default. The agent has access to the information that is revealed by observation

of the stock price. The stock is declared to be bankrupt at the first time accumulated condi-

tional probability of default exceeds the realization of an exponential random variable, which

is completely uncorrelated and independent to the stock price behavior. Reduced form models

are mathematically rigorous and involved and therefore will be explained in a more elaborated

manner in model section. Moreover, real time flavors of the actual events of bankruptcy in

the sense that, the event of bankruptcy cannot be foreseen given the knowledge of history of

the stock price movement. In the second part of the paper, we would evaluate the stock loan

problem subject to bankruptcy according to the reduced form specification.

The chapter is organized as follows: The next section introduces the basic stock loan prob-
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lem (due to Xia and Jhou, 2007). In section 3, the risk of bankruptcy is introduced in the

valuation of the stock loan problem following the Black and Cox specification, and the closed

form expression of the valuation is obtained. In section 4, we introduce bankruptcy in reduced

form approach and prove the existence of the optimal exercise boundary. Section 5 presents the

numerical analysis of parameter sensitivity of the optimal exercise boundary and discuss some

related policy issues. Section 6 concludes the chapter and discuss the scope of future research.

2.2 Stock Loan Problem

We consider the standard Black-Scholes model in a continuous time, where model economy

consists of two assets: a risky asset (Stock), and a risk less asset (a bond). The continuous

compounding risk neutral interest rate is assumed to be a constant at r > 0. We consider a

filtered risk neutral probability space (Ω,F ,Q) and let (F(t))t≥0 be the associated filtration.

Let W (t) be a Brownian motion defined on this probability space and relative to this filtration

(F(t))t≥0 such that , W (t) is F(t) measurable for every t and for every u > t, the Brownian

increment W (u) −W (t) is independent of F(t). In other words, the information revealed by

the Brownian motion at every instant t is captured by the Brownian filtration F(t), t ≥ 0, with

F0 = σ(φ,Ω) and F = σ(∪t≥0Ft). As in the celebrated Black-Scholes model, the stock price

is assumed to follow the standard model of a geometric Brownian motion (GBM)- a diffusion

process with constant drift, r > 0 and volatility σ > 0 with an infinite life time:

St = S0exp{(r −
σ2

2
)t+ σWt}, t ≥ 0 (2.1)

where, S0 > 0 is the initial stock price and σ > 0 is the implied volatility. For the sake of

simplicity, we assume dividend to be zero.

A stock loan contract is a security based lending agreement between the lender (bank)

and the borrower (client), where the client, who owns a share of the stock, borrows q >

0 amount of money from the bank using the stock position as a collateral. In our partial

equilibrium framework, we assume that value of q is optimally decided by the lending authority
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and therefore, given to the borrower. Continuous compounding loan interest rate being γ, the

client may choose to regain the stock at any time instant t > 0 by repaying qeγt to the

lending authority. The client has the choice but not the obligation to repay the loan and

regain the stock, and hence, he might choose to surrender the stock for ever. At this point, it

is instructive to recapitulate the definition of a traditional American call option, in order to

make the comparison between the above discussed financial instruments self-explanatory. An

American call option is a financial contract between two parties where the buyer of the option

has the right but not the obligation to buy the agreed quantity of a financial instrument from

the seller any time before the expiration date for a predetermined price, called strike price. The

seller is obligated to sell the commodity if the buyer decides to purchase it. From the discussion

thus far, it is quite clear that stock loan contract is equivalent to an American type option with

time varying strike price, where the payoff process is Yt = [St − qeγt]+ = max[(St − qeγt), 0].

The agent implicitly pays (S0 − q) to buy the option at time zero. In a partial equilibrium

framework, the problem faced by the borrower is to find an optimal time to regain the stock so as

to maximize the expected net present value of the lifetime payoff. The important characteristic

of the exercise time is with the information revealed by the realized stock price, agent should be

cognizant and informed about the event of exercise when the time arrives. Mathematically, the

optimal exercise time should be a (Ft)-stopping time and this type of optimization problem is

broadly termed as an optimal stopping problem. The present value of the discounted expected

payoff at the optimal stopping time is exactly the value of the financial instrument. Thus, the

problem essentially is to evaluate an American option with time dependent strike price qeγt.

We call the value of the option the initial value or the price of stock loan. Technically, starting

at time zero (and therefore with the knowledge of initial stock price S0 only), the problem is

to choose a stopping time (from the class of all (Ft)-stopping times) that maximize the value

of the option.

The value function of the option, as a function of initial stock price S0 = x can be written as:

f(x) = sup
τ
E[e−rτ (Sτ − qeγτ )+|S0 = x] (2.2)
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where, τ has to be chosen from all (Ft)t≥0 stopping times, and the expectation is taken with

respect to the risk neutral probability measure Q. A simple transformation can be used to turn

the problem into one with a time-independent strike price.

f(x) = sup
τ
E[e−(r−γ)τ (e−γτSτ − q)+] (2.3)

where, the transformed stock price S̃t (= e−γτSt) follows a transformed GBM given by:

S̃t = S̃0 exp{(r − γ − σ2

2
)t+ σWt}, t ≥ 0 (2.4)

In the process of transforming the problem, the effective discount factor (r − γ) becomes

negative (since the lending interest rate is usually higher than the risk neutral interest rate),

which poses a serious problem on the valuation of the option. It turns out that the standard

techniques of solving such an optimal stopping problem using the variational inequalites in dif-

ferential equations and the smooth-fit principle does not work because of the negative discount

factor. For this specific reason, the valuation of the stock loan is computed using a pure prob-

abilistic approach (Xia nd Jhou, 2004).3 In their analysis, they have shown that, the optimal

stopping time for the problem happen to be:

τ∗ = inf{t ≥ 0 : St − qeγt ≥ Vt} (2.5)

where, the threshold value function, Vt takes the form of a snell’s envelope.

Vt = ess sup
τ
E[e−r(τ−t)(Sτ − qeγτ )+|Ft]. (2.6)

In a nutshell, the stock loan problem itself is a non trivial extension of American type

call option valuation. Introducing the risk of bankruptcy is a realistic generalization which

makes the problem widely applicable and mathematically more challenging at the same time.

Moreover, in the face of recent severe economic downturn (which have seen a number of well

3Please refer to the original Stock loan paper by Xia and Jhou.
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established and reputed corporate houses go bankrupt), risk of bankruptcy while pricing a

financial derivative is ubiquitous.

2.3 Introducing Bankruptcy: Structural Form

Structural form models emanated from the pioneering work of Black and Scholes (1973)

and Merton (1974). In the original construction of Merton (1974), a firm has a single liability

with promised terminal payoff L, interpreted as the zero-coupon bond with maturity T and

face value L > 0. The ability of the firm to redeem its debt is determined by the total value

of firm’s assets at time T, VT . Default may occur at maturity time T only, and the default

event corresponds to the event {Vt < L}. By construction, Merton’s model does not allow for

a premature default, in the sense that the default is not modeled to occur before the maturity

of the claim. Several authors put forward structural-type models in which this restrictive and

unrealistic feature is relaxed. Black and Cox (1976) extended Merton’s research in valuation of

corporate zero coupon bond by taking several specific features of real life debt constraints into

account. A salient feature of Black and Cox (1976) model is introduction of the possibility of

premature default. We introduce the risk of bankruptcy in the valuation of stock loan following

the Black-Cox (1976) specification. Though we work with the basic stock loan set-up, in order

to introduce the aforementioned notion of bankruptcy, we need to modify several elements of

the model according to the Black-Cox specification. The elements of the modified stock loan

problem is documented as follows:

Stock Loan. As in the basic stock loan problem, we consider a simple world with two

assets, a stock and a bond. An agent (borrower), who owns one share of a stock, obtains a

loan q from the bank (lender) at t = 0 with the share as collateral. Lending interest rate fixed

by the lender is assumed to be γ. We assume the stock price process follows the same GBM

process as in the original stock loan model, given by equation (1).

Maturity and Repayment options. Following the Black-Cox model, we consider the

problem in a finite-time horizon. We assume that the loan contract matures at T. At the

maturity, the owner has the option but not the obligation to repay the principal with the



www.manaraa.com

34

interest (or, interest accumulated loan amount) qeγT and regain the stock. However, if the

owner chooses not to regain the stock, by default the stock belongs to the lender and owner

loses the right on the asset.

Default Barrier. We introduce the notion of bankruptcy following Black-Cox (1976) as

follows: within the time period [0, T ], the asset is declared to be bankrupt the first time asset

price hits a lower boundary. The boundary is modeled as a deterministic function of time.

Following Black and Cox (1976), default boundary is taken as:

C(t) = C1e
−δ(T−t), t ≥ 0. (2.7)

In the original formulation of Black and Cox (1976), the boundary represents the point at which

bond safety covenants cause a default. The primary reason to choose the above functional

form for default boundary is analytical convenience. First passage times for diffusions have

been thoroughly/rigorously studied and closed form solutions are available in the case where

Brownian motion is hitting a linear boundary. To allow for the movements of stock price to

analyze bankruptcy, we assume

S0 > C1e
−δT

which essentially means at the time of borrowing, stock price exceeds the value of the default

boundary. Under this formulation, the event of bankruptcy is modeled as the first time stock

price hits the above specified boundary, introduced as following stopping time:

τ = inf{t ≥ 0 : St ≤ C1e
−δ(T−t)} (2.8)

Essentially, τ is the first passage time of the stock-price diffusion process to the specified

boundary. A graphical representation of default will be illuminating.
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Figure 2.1 Bankruptcy: Black and Cox (1976)
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The continuously differentiable increasing curve represents the boundary. Each random

graph represents a realization of the stock price process. This formulation essentially means, if

the agent is on a path that intersects the boundary at a τ ∈ [0, T ], then the stock is declared

bankrupt. The payment that the client makes to the bank is crucially contingent on occurrence

of τ within the interval [0, T ]. This issue is crucial for the valuation and therefore, addressed

in detail in the next subsection.

2.3.1 Payment Structure

In the event of bankruptcy (i.e., if τ ∈ [0, T ]), the stock is declared to be bankrupt and the

client no longer have any right on the stock. The bank owns the stock following the terms of

the contract and therefore, have the right to liquidate it. Hence, in the event of bankruptcy

occurring before the maturity, the implicit payment to the lender is:

e−rτSτ = e−rτC1e
−δ(T−τ)

In the case of no default prior to maturity (i.e., if τ > T ), then the borrower has the right, but

not the obligation, to pay qeγT at t = T and get the stock back. The client is not obliged to
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regain the stock. Therefore, in case the client does not claim, bank owns the stock and have the

right to liquidate it at T . Therefore, in the event of nonoccurrence of the bankruptcy before

maturity, the value of the contract to the bank is Min{ST , qeγT }.

2.3.2 Valuation

From the theory of option pricing, the value (or price) of the contract at t = 0 turned out

to be the risk neutral expectation of the present value of the future promised payments.4

Denoting this value as V0, we have:

V0 = E[e−rTMin{ST , qeγT }I[τ>T ] + e−rτC1e
−δ(T−τ)I[τ≤T ]] (2.9)

where, τ is defined as in equation (2.8).

The Black and Cox specification of the parameter imply that C1 < qeγT . For the purpose

of our model, we can take C1 = qeγT , without any loss of generality. Nevertheless, we note

that,

q > C1e
−δT , since δ > γ. (2.10)

Let us denote (qeγT − ST )+ = Max{(qeγT − ST ), 0}. Then, the expression Min{ST , qeγT } can

be decomposed and rewritten as:

Min{ST , qeγT } = qeγT − (qeγT − ST )+

Using the above decomposition, the expression for the valuation of the contract at t = 0 can

be rewritten as:

V0 = E[e−rT {qeγT − (qeγT − ST )+}I[τ>T ] + e−rτC1e
−δ(T−τ)I[τ≤T ]]

4From the theory of option pricing, it is well known that in an economy consisting of two assets, the price C0

at time zero of any contingent claim paying C(ST ) at time T is equal to:

C0 = EQ[e−rTC(ST )].

where, Q is the EMM under which the stock price follows a GBM. [For further details, please refer to Lando, D:
”Credit Risk Modeling”, PP 9]
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which, essentially boils down to:

V0 = qe−(r−γ)TE[I[τ>T ]]− E[e−rT (qeγT − ST )+I[τ>T ]] + C1e
−δTE[e−(r−δ)τI[τ≤T ]] (2.11)

It is evident from the above expression that the probability distribution of the first passage

time τ plays a crucial role in computing the valuation. To this end, we first state and prove

the central result of this section that calculates the probability distribution function of the

stopping time . This distribution essentially is the probability distribution of first passage time

of a Brownian motion with drift, which can be derived by collecting facts and formulas about

Brownian motion.5 For the purpose of completeness, a proof is included.

Lemma 1. The probability distribution of the first passage time τ , defined as in equation (2.8)

is given by:

Q[τ ≤ T ] = N(
a− µT
σ
√
T

) + e2µaσ−2
N(

a+ µT

σ
√
T

) (2.12)

where, µ = r − δ − σ2

2
; a = ln(

C1

S0
)− δT , and N(x) =

1

2π

x∫
−∞

e
−

1

2
z2

dz.

Proof. The default time τ , as introduced in the equation (2.8), is given by,

τ = inf{t ≥ 0 : St ≤ C1e
−δ(T−t)}

Using a simple algebraic manipulation, this stopping time can be expressed in terms of a

transformed process Xt as:

τ = inf{t ≥ 0 : Xt ≤ C1e
−δT = CT } (2.13)

where, Xt = e−δtSt, follows the SDE:

dXt = Xt[(r − δ)dt+ σdWt] (2.14)

5Please refer to Borodin and Salminen [3] for useful “Facts and Formulas about Brownian motion”. Detail
derivations of similar formulas is presented in Bielecki and Ruthkowski [2].
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with X0 = x. Using Ito’s lemma, we can obtain that the Xt process follows:

Xt = x exp{(r − δ − σ2

2
)t+ σWt} (2.15)

Next, a logarithmic transformation is used to represent the stopping time τ in terms of a

passage time of a Brownian motion with drift, as:

τ = inf{t ≥ 0 : lnVt ≤ lnCT }

= inf{t ≥ 0 : [(r − δ − σ2

2
)t+ σWt] ≤ ln(

CT
V0

)}.

Denoting (r − δ − σ2

2 ) = µ, and ln(C1
S0

)− δT = a we get:

τ = inf{t ≥ 0 : µt+ σWt ≤ a}.

In words, τ is the first time when this Brownian motion with drift becomes less than or equal

to the constant value a. Now, if that random time happens to be greater than T , then simple

mathematical logic implies that, the minimum value that the process attains within the entire

interval [0, T ] must be greater than a. Translating this logic into equations, we get:

Q[τ > T ] = Q[ inf
0≤t≤T

(µt+ σWt) > a] (2.16)

We invoke the distribution of the running infimum process of a Brownian motion with drift to

get the desired probability distribution. For σ > 0, µ ∈ R and any a > 0, the distribution of

the running infimum process is given by:

Q[ inf
0≤t≤T

(µt+ σWt) > a] = N(
−a+ µT

σ
√
T

)− e2µaσ−2
N(

a+ µT

σ
√
T

) (2.17)

where, N(u) =
1

2π

u∫
−∞

e
−

1

2
z2

dz is a standard normal distribution function (Borodin and Salmi-

nen, 2002). Henceforth, the remaining part of the deduction is straightforward. The probability

distribution function of the first passage time τ with respect to the risk neutral probability is
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given by:

Q[τ ≤ T ] = 1−Q[ inf
0≤t≤T

(µt+ σWt) > a] (2.18)

= N(
a− µT
σ
√
T

) + e2µaσ−2
N(

a+ µT

σ
√
T

) (2.19)

since, 1 −N(
−a+ µT

σ
√
T

) = N(
a− µT
σ
√
T

), follows from the symmetry. This completes the proof.

Thus, using the probability distribution of the first passage time of a Brownian motion with

drift , we can easily calculate an analytical expression for the first term of equation (2.11):

qe−(r−γ)TE[I[τ>T ]] = qe−(r−γ)[N(
−a+ µT

σ
√
T

)− e2µaσ−2
N(

a+ µT

σ
√
T

)] (2.20)

Moreover, the following term the the equation (2.11), C1e
−δTE[e−(r−δ)τI[τ≤T ]] is simply an

expectation of a function of a random variable, τ , whose distribution has already been derived.

So, calculating the expectation is straightforward, as described below:

C1e
−δTE[e−(r−δ)τI[τ≤T ]] = C1e

−δT
T∫

−∞

e−(r−δ)τdQ[τ ≤ T ] (2.21)

= C1e
−δT

T∫
−∞

e−(r−δ)τd[N(
a− µT
σ
√
T

) + e2µaσ−2
N(

a+ µT

σ
√
T

)](2.22)

The remaining part of the valuation (i.e., the last term in the RHS of the equation (2.11))

E[e−rT (qeγT − ST )+I[τ>T ]], is exactly same as the valuation of a rigorously studied and quite

popular financial derivative, called down-and-out barrier option. Since the analytical solution

for the valuation of down-and-out barrier option already exists in the literature, we simply
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borrow the term for our purpose, which takes the following form:6

E[e−rT (qeγT − ST )+I[τ>T ]] = e−(r−δ)T
∞∫

lnCT

(qT − ep)ϕ(p;µT + ln(S0), σ
√
T )dp (2.23)

+ e−(r−δ)T (
CT
S0

)2µσ−2

∞∫
lnCT

(qT − ep)ϕ(p;µT + ln(
C2
T

S0
), σ
√
T )dp (2.24)

where, where, µ = r − δ − σ2

2 and ϕ(x;µ, σ) denotes the density of a normal distribution with

mean µ and variance σ2. Thus, introducing the risk of bankruptcy in the stock loan problem

following Black and Cox (1976) formulation, we can find analytical solution for the valuation

explicitly in terms of probability distribution of the first passage time of Brownian motion with

drift and the valuation of down-and-out barrier options. The closed form expression for the

valuation is:

Vt = qe−(r−γ)[N(
−a+ µT

σ
√
T

)− e2µaσ−2
N(

a+ µT

σ
√
T

)]

− e−(r−δ)T
∞∫

lnCT

(qT − ep)ϕ(p;µT + ln(S0), σ
√
T )dp

− e−(r−δ)T (
CT
S0

)2µσ−2

∞∫
lnCT

(qT − ep)ϕ(p;µT + ln(
C2
T

S0
), σ
√
T )dp

+ C1e
−δT

T∫
−∞

e−(r−δ)τd[N(
a− µT
σ
√
T

) + e2µaσ−2
N(

a+ µT

σ
√
T

)]

In the structural form modeling , agent has complete information about the history of asset

prices as well as the value of default barrier. Given that information, agent can construct a

sequence of stopping times (τn) in such a way that the sequence (τn) increases to the optimal

stopping time τ∗ as n approaches infinity. In other words, bankruptcy is modeled as predictable

stopping time, given the knowledge of history of stock price. This specific characteristic faces

severe criticism when compared to more sophisticated models of bankruptcy that models default

as non predictable. Modeling bankruptcy as a non predictable event was first introduced in

6An extensive coverage on barrier option can be found in Bjork (2004). For further reference, please refer to
Rubinstein and Reiner (1991) and the survey in Carr (1995).
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reduced form modeling (Jarrow and Turnbull, 1995), which is also termed as intensity modeling

interchangeably.

2.4 Bankruptcy: Intensity Modeling

In the general reduced-form or intensity modeling approach, we deal with two kinds of

information: the information conveyed by the assets prices, and the information about the

occurrence of the default time. The later refers to the knowledge of the time where the de-

fault occurred in the past, if the default has indeed already happened. The later is a bigger

filtration which is generated by the default process and incorporates the information conveyed

by the observed asset price process. This specific feature makes the default non-predictable.

In this formulation, finding the value of the contract at time zero is a much more challenging

mathematical problem.

The fundamental idea of the intensity based framework is to model default occurring according

to an intensity function. In the literature, the intensity function is modeled as a decreasing

function of the stock price, which essentially represents the instantaneous default probability,

i.e. the (very) short-term default risk. The notion comes form the operation research literature

where, the intensity function or hazard rate is the conditional default arrival rate, given no

default so far.

lim
δ→0

P[τ0 ∈ (t, t+ δ)|τ0 > t]

δ
= h(St) (2.25)

The argument behind the construction of the intensity function is very intuitive. Higher is

the current stock price, less is the risk of default which is in conformity with the value of the

intensity function. Now this intuition holds true as long as the inverse relationship between

current stock price and default intensity is maintained. To facilitate our analysis, we make

some assumptions regarding the intensity function and its properties.
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2.4.1 Assumptions

(i) In order to introduce the hazard rate intensity function (h(.)) ,we assume that h is a

continuously differentiable, strictly decreasing function defined on (0,∞). The function

exhibits following characteristics:

lim
x→0+

h(x) = +∞ and lim
x→+∞

h(x) = 0. (2.26)

(ii) We assume that the hazard rate intensity function is a function of the discounted stock

price, where the discount factor is the lending interest rate γ. We denote the discounted

stock price e−γtSt by S̃t, which represents the value of the stock to the lender. We assume

that the lender (the Bank) decides the worth of the stock at each point in time while

modeling bankruptcy and therefore, consider the discounted value of stock price.

h(e−γtSt) = h(S̃t). (2.27)

Defining the intensity function in this manner is in conformity with the spirit of intensity

modeling. To elaborate, as the stock price declines towards zero, so does the discounted

stock price and as a result, default intensity blows up to infinity. As the stock price go up,

so does the discounted stock price and consequently, hazard rate declines to zero, making

the stock price process asymptotically tend to a GBM.

2.4.2 Fundamentals

Let (Ω,F ,Q) be a risk neutral probability space supporting a standard Brownian motion

{Wt, t ≥ 0}. The information revealed by the Brownian motion at every instant t is captured

by the Brownian filtration (Ft)t≥0, with F0 = σ(φ,Ω) and F = σ(∪t≥0Ft). We assume a

frictionless market, no arbitrage and take an equivalent martingale measure (EMM) given as

Q. To model bankruptcy as an inaccessible phenomenon, an exponential random variable e

with parameter 1 is introduced that is independent to the Brownian motion. Random time
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of bankruptcy τ0 is modeled as the first time when the process
t∫

0

h(S̃u)du is greater or equal

to the realization of independent random variable e. In words, the stock is considered as

bankrupt when the accumulated conditional probability of default exceeds the realization of an

exponential random variable, independent to the Brownian motion.

τ0 = inf{t ≥ 0 :

t∫
0

h(S̃u)du ≥ e} (2.28)

= +∞, if the above set is empty. (2.29)

At the time of bankruptcy τ0, the stock price jumps to the bankruptcy state 4, where it

remains forever. In the terminology of the Markov processes, 4 is called a cemetery state.

We assume that, the stock owner does not get any recovery in the event of bankruptcy and

the stock becomes worthless. Therefore, we model the stock price subject to bankruptcy as

a diffusion process {S4t , t ≥ 0} with the extended state space E4 = (0,∞) ∪ {4}, diffusion

coefficient σSt, drift (r+h(S̃t))St and hazard rate h(S̃t).
7 To ensure that the discounted stock

price is a martingale under EMM Q, the hazard rate intensity needs to be added to the drift

of the process (Davis and Lischka, 2002). Intuitively, addition of the hazard rate to the drift in

the pre-default stock price process increases the expected rate of return from the defaultable

stock, to provide the stockholder with some incentive to compensate for additional risk. In our

notation, {St, t ≥ 0} is pre-default stock price process, whereas, {S4t , t ≥ 0} is the stock price

process subject to bankruptcy. Therefore,

S4t = St, for t < τ0

= 4, for t ≥ τ0.

To describe the dynamics of the asset price process {S4t , t ≥ 0} and to keep track of how

information is revealed over time, we introduce the bankruptcy jump indicator process {Dt :

7For details, please refer to Elliot, Jeanblanc and Yor (2001) and Linetsky (2004).
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t ≥ 0} by

Dt = I[τ0≤t]

Let {Dt, t ≥ 0} be the filtration generated by the (Dt) process, and {Ft, t ≥ 0} be the filtration

generated by the brownian motion process. We introduce an enlarged filtration, Gt = Ft ∪ Dt,

for each t ≥ 0. The defaultable stock price is adapted to Gt and therefore, τ0 is a Gt -stopping

time. It is customary to identify the cemetery state 4 = 0. Then we can represent the

defaultable stock price process {S4t , t ≥ 0} by,

dS4t = S4t−[rdt+ σdWt − dMt]

where,

Mt = Dt −
min{τ0,t}∫

0

h(S̃u)du

We note that, the process {Mt : t ≥ 0} is a (Gt) martingale. Therefore, e−rtS4t is also a (Gt)

martingale.

The pre-default underlying asset price dynamics under the EMM follows a diffusion process,

satisfying the following stochastic differential equation (SDE):

dSt = St[(r + h(S̃t))dt+ σdWt] (2.30)

with S0 = x, where, h(S̃t) denotes the state dependent default intensity. The SDE that the

pre-default stock price follows has a unique strong non-exploding solution under the assumption

(i).

2.4.3 Problem Formulation

The client owns a share of a stock with the price process at time t is given by S4t , which

is subject to bankruptcy and is modeled by above SDE’s. The information available to the

investor at time t is represented by σ−algebra Ft, which makes τ0 non-predictable. The rate
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of time preference is assumed to be ρ > r. Without any loss of generality, ρ is assumed to

equal (r + ε), where ε is a small positive number. Therefore, the problem of the stock owner

is to find a (Ft)−stopping time τ∗ so as to maximize E[e−ρτ (S4τ − qeγτ )+I[τ<τ0]] over all the

(Ft)−stopping time τ . Since the information available to the owner at time t is represented

by Ft, we maximize the expected discounted payoff over all (Ft)-stopping times τ . The value

function is given by:

V (x) = sup
τ
Ex[e−ρτ (S4τ − qeγτ )+I[τ<τ0]]. (2.31)

where, the supremum is taken over all the (Ft)−stopping times τ . The following mathematical

result is used to reduce the problem in terms of the pre-default stock price. This result is the

same as Proposition 3.1 in Meng and Weerasinghe (2007). We present an alternative proof here

for the purpose of completeness.

Proposition 2. For any finite Ft stopping time τ ,

E[I[τ<τ0 |Fτ ] = e
−
τ∫
0

h(S̃u)du
(2.32)

where, τ0 is the bankruptcy time, as introduced in (2.29).

Proof. The bankruptcy time τ0 is introduced as:

τ0 = inf{t ≥ 0 :

t∫
0

h(S̃u)du ≥ e}

Using this definition, we have,

E[I[τ<τ0]|Fτ ] = Q[(τ < τ0)|Fτ ]

= Q[

τ∫
0

h(S̃u)du ≤ e|Fτ ]

= e
−
τ∫
0

h(S̃u)du

The last equality follows from the fact that
τ∫
0

h(S̃u)du is a known constant given the information
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revealed by Fτ , and e is an exponential random variable with mean 1 independent of Fτ . Hence

the result.

Using this proposition, we can reduce the problem in terms of the pre-default stock price,

as:

E[e−ρτ (S4τ − qeγτ )+I[τ<τ0]] = E[e−ρτ (Sτ − qeγτ )+I[τ<τ0]]

= E[e−ρτ (Sτ − qeγτ )+I[τ<τ0]|Fτ ]

= E[e
−
τ∫
0

(ρ+h(S̃u))du
(Sτ − qeγτ )+]

Consequently, the value function can be represented as :

V (x) = sup
τ
E[e
−
τ∫
0

(ρ+h(S̃u))du
(Sτ − qeγτ )+]

where, the supremum is taken over all the (Ft)−stopping times τ . Using the transformation

e−γtSt = S̃t, we can express the value function as a function of S̃t.

V (x) = sup
τ
E[e
−
τ∫
0

(ρ−γ+h(S̃u))du
(S̃τ − q)+] (2.33)

Thus, without any loss of generality, the optimal stopping problem reduces to find a (Ft)-

stopping time τ so as to maximize the value function:

Vx = sup
τ
E[e
−
τ∫
0

(r̃+ε+h(S̃u))du
(S̃τ − q)+] (2.34)

where, r̃ = (r − γ) < 0. The transformed stock price S̃t satisfies the following SDE:

dS̃t = S̃t[(r̃ + h(S̃t))dt+ σdWt] (2.35)

S̃0 = x (2.36)

At this point, the counteractive forces governing the dynamics behind the optimization
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problem is prominent. As the stock price fluctuates, it spills the impact over the intensity

function which in turn initiate a perturbation in the model from two avenues. A sharp decline

in the stock price raises the intensity value and thus increases the expected rate of return form

the stock. This effect provides an incentive for the owner the hold the stock a bit longer. On

the flip side, increase in intensity makes the future gain getting discounted more heavily and

acts as a disincentive to hold the option. Since the absolute value of the discount factor exceeds

that of the drift term, the disincentive generated from a stock price decline tends to dominate

in effect. Nonetheless, this underlying tradeoff makes the economic decision non trivial and the

problem interesting to analyze.

2.4.4 A verification lemma

Following the method of dynamic programming for the optimal stopping problem, we can

write down the formal Hamilton-Jacobi-Bellman (HJB) equation associated with our problem

as:

max{σ
2

2
x2Q′′(x) + (r̃ + h(x))xQ′(x)− (r̃ + ε+ h(x))Q(x), (x− q)+ −Q(x)} = 0 (2.37)

for almost all x ∈ [0,∞). Hence, the derivation of an optimal stopping time is closely associated

with finding a smooth solution to HJB equation (2.37). Our objective is to show that value

function V (x) is the unique smooth solution to the HJB equation above. In order to show that,

we first state and proof the following verification lemma:

Lemma 3 (Verification Lemma). Let Q be a non-negative, continuously differentiable function

defined on [0,∞), which is piecewise twice differentiable. Also, the limits limc− Q
′′(x) and

limc+ Q
′′(x) exists and are finite for every c. Assume that the function Q satisfies the HJB

equation above for almost all x ∈ [0,∞). Then Q(x) ≥ V (x) for all x > 0, where V (.)is the

value function described by:

V (x) = sup
τ
E[e
−
τ∫
0

(r̃+ε+h(S̃u))du
(S̃τ − q)+].
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Proof. We define the the differential operator L by:

L =
σ2

2
x2 d

2

dx2
+ (r̃ + h(x))x

d

dx
− (r̃ + ε+ h(x)) (2.38)

for all x > 0. Let S0 = x is fixed. For each n > x, we introduce a sequence (τn) of (Ft)−

stopping times by:

τn = inf{t ≥ 0 : S̃t ≥ n}

= +∞, if the above set is empty.

Then as n → ∞, the sequence of stopping times (τn) also increases to infinity. Using Ito’s

lemma, we obtain:

Ex[e
−
τ∧τn∫
0

(r̃+ε+h(S̃u))du
Q(Sτ∧τn)] = Q(x) + Ex

τ∧τn∫
0

e
−
u∫
0

(r̃+ε+h(S̃r))dr
(LQ)(S̃u)du

The last inequality holds since LQ ≤ 0 by the HJB equation. Since Q is a non-negative

function, applying Fatou’s lemma gives us

Ex[e
−
τ∫
0

(r̃+ε+h(S̃u))du
Q(S̃τ )] ≤ Q(x), for each x ≥ 0.

Next, we can take the supremum over all (Ft)−stopping times τ and obtain V (x) ≤ Q(x), for

each x ≥ 0. This completes the proof.

In the next section, the existence of the optimal exercise boundary of this financial derivative

is proved. Moreover, it is shown that the optimal exercise boundary is of threshold type. In

other words, it is optimal to regain the stock at the first time the stock price reached a closed

interval [x∗,∞). To prove our central theorem, first the existence of a smooth solution of (2.37)

and the existence of a free boundary point is assumed. This solution and the boundary point

is used to construct a optimal selling time. After this, what remains to prove is the existence
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of such a function and the optimal exercise boundary. This is proved using a pamametrization

method and considering a transformed problem.

2.4.5 Optimal Exercise Boundary

Let us assume the existence of a point x∗ and a non negative smooth function Q̂ such that

the function is defined on the (0,∞) and it satisfies:

LQ̂ = 0 for all x > 0, Q̂(x∗) = (x∗ − q)+, Q̂′(x∗) = 1

and Q̂′′(x∗) > 0. Moreover, Q̂(x) > max{x− q, 0} for all 0 < x < x∗ and Q̂(0+) = 0. Then we

introduce the optimal exercise function as:

Q∗(x) = Q̂(x) for 0 < x < x∗ (2.39)

and,

Q∗(x) = (x∗ − q) for x ≥ x∗ (2.40)

Next, we state and prove the central result of the section regarding the value function and the

optimal exercise boundary. The issue of existence of such a function and the free boundary

problem will be addressed in the next section.

Theorem 4. Let Q∗ be defined as in (2.39) and (2.40). Then

(i) Q∗ is a continuously differentiable function on [0,∞) which satisfies the HJB equation,

given in (2.37). Moreover, Q∗(.) is twice continuously differentiable everywhere except at

the optimal exercise point x∗ and Q∗
′′
(x∗+) and Q∗

′′
(x∗−) are finite.

(ii) Let τ∗ be a (Ft) stopping time defined by:

τ∗ = inf{t > 0 : S̃t ≥ x∗} (2.41)

= +∞, if the above set is empty. (2.42)



www.manaraa.com

50

Then τ∗ is an optimal stopping time and,

V (x) = Q∗(x) for all x ≥ 0.

where V (x) is the value function.

Proof. By construction, Q∗ coincides with the function Q̂ which satisfies HJB equation (2.37)

on the interval (0, x∗). Clearly, Q∗ satisfies the HJB equation (2.37) on (0, x∗). To verify that

Q∗ satisfies the HJB equation on the interval (x∗,∞), we notice that LQ∗(x∗−) = LQ̂(x∗−) = 0

and hence, Q̂′′(x∗−) > 0. Therefore,

εx∗ − q(r̃ + ε+ h(x∗)) > 0

Consequently,

εx− q(r̃ + ε+ h(x)) > εx∗ − q(r̃ + ε+ h(x∗)) > 0, for all x > x∗

since, h′(.) < 0. Therefore, since Q∗(x) = x− q for all x > x∗, we have,

LQ∗ < 0 on the interval (x∗,∞).

This completes the proof of part (i).

Proof of part (i) along with Lemma (3) implies that

Q∗(x) ≥ V (x) for all x > 0.

To complete the proof of part (ii), it remains to show that

Q∗ ≤ V (x) for all x > 0.

We first consider the case x < x∗. Let τ∗ be as in (2.42). Then using Ito’s lemma on the



www.manaraa.com

51

function Q∗(S̃t)e
−

t∫
0

(r̃+ε+h(S̃u)du
, we obtain,

E[Q∗(S̃T∧τ∗)e
−
T∧τ∗∫
0

(r̃+ε+h(S̃u))du
] = Q∗ + E

T∧τ∗∫
0

e
−

t∫
0

(r̃+ε+h(S̃u))du
LQ∗(S̃t)dt

Since Q∗ is bounded on [0, x∗], LQ∗(x) = 0 when x < x∗ and Q∗(x∗) = x∗ − q, then letting T

tend to ∞, we obtain,

Q∗(x) = E[Q∗(S̃τ∗)e
−
τ∗∫
0

(r̃+ε+h(S̃u)du
] = E[e

−
τ∗∫
0

(r̃+ε+h(S̃u)du
(S̃τ∗ − q)+]

when x < x∗. Since τ∗ is a (Ft) stopping time, it follows that Q∗(x) ≤ V (x) when x < x∗.

On the other hand, when x ≥ x∗, Q∗(x) = x−q and by definition, τ∗ = 0. Thus, Q∗(x) ≤ V (x)

for x ≥ x∗.

Hence, Q∗(x) = V (x) for all x and τ∗ is an optimal stopping time. Hence the theorem.

2.4.6 Existence of the Function Q̂(.)

To complete the proof of the central theorem, Theorem (4), it remains to prove the existence

of such a function Q̂ and an associated optimal stopping boundary point x∗. To this end,

a parametric family of functions that satisfy the second order linear homogeneous ordinary

differential equation LQ = 0 will be analyzed. Finally, the optimal function will be chosen

using the solution to a variational equality and principle of smooth-fit.

First, we consider a logarithmic transformation Yt = ln(S̃t), with the transformed initial

value y = ln (x), primarily because of analytical convenience. The discounted stock price S̃t

satisfies the SDE specified in (2.36). Using Ito’s lemma, it is straightforward to find that Yt

process satisfies:

dYt = (r̃ − σ2

2
+ φ(Yt))dt+ σdWt (2.43)

with Y0 = y, where φ(y) represents the transformed default intensity h(ey), which is defined

on the domain (−∞,+∞). The assumptions imposed on the characteristics of h(.) function

implies that lim
y→−∞

φ(y) = +∞ and lim
y→∞

φ(y) = 0. The differential operator H associated with
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the transformed process Yt is given by:

H =
σ2

2

d

d2y
+ (r̃ − σ2

2
+ φ(y))

d

dy
− (r̃ + ε+ φ(y)) (2.44)

Using the logarithmic transformation, the initial problem of finding a function Q̂ on the domain

(0,∞) and an associated optimal exercise boundary x∗ is transformed to finding a function U

and an associated point y∗, such that:

(i) The function U(.) is positive, strictly increasing, continuously differentiable and lim
y→−∞

U(y) =

0.

(ii) Moreover, HU(y) = 0 for all y < y∗, U(y) = (ey − q)+ for y ≥ y∗, U ′(y∗) = ey
∗

and

U ′′(y∗−) is finite.

Then, the relationship between the original and the transformed value functions can be ex-

pressed as Q̂(x) = U(ln(x)).

To prove the existence of such a function in our analysis, we introduce a point ŷ by:

ŷ = inf{y > 0 : r̃ + φ(y) ≤ 0} (2.45)

At this point, we make a minor assumption about the structure of our environment. We assume

that the ŷ defined in equation (2.45) satisfies ŷ > ln q. This is a minor assumption and tends

to be satisfied in most of the environments without any major modification. We note here that

existence results are not crucially contingent on this assumption. Assuming this, we would

show that for any large b, such that ŷ > b > ln(q), the boundary value problem

HUb(y) = 0, Ub(b) = (eb − q) and lim
y→−∞

Ub(y) = 0 (2.46)

has a unique solution Ub(y). Moreover, this unique solution has the following stochastic repre-

sentation, which can be derived using Ito’s lemma (as will be shown subsequently):

Ub(y) = Ey[e
−
τb∫
0

(r̃+ε+φ(yu)du
](eb − q)+ (2.47)
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To this end, for each b within the interval ŷ > b > ln(q), an (Ft) stopping time τb is introduced

as:

τb = inf{t ≥ 0 : Yt ≥ b} (2.48)

= +∞, if the above set is empty (2.49)

Also, a function Ub(y) defined on the interval (−∞, b] is introduced for every b ∈ [ln(q), ŷ] by:

Ub(y) = Ey[e
−
τb∫
0

(r̃+ε+φ(yu)du
](eb − q) (2.50)

Since the function Ub(.) is positive and increasing throughout the domain (as will be shown

subsequently), it intersects the curve (ey − q)+ at a point b, where b > ln(q). Moreover, since

we consider any b where ŷ > b > ln(q), (ey − q)+ is equivalent to the amount (ey − q).

The next lemma shows that the function Ub(y) is the unique solution to the boundary value

problem specified in (2.46).

Lemma 5. Let ŷ be defined as in the equation (2.45) and also, let us assume ŷ > ln(q). The

(Yt) process follows the SDE (2.43). For any b, such that ŷ > b > ln(q), and for each n > |y|,

the stopping time τn is introduced by:

τn = inf{t ≥ 0 : Yt ≤ −n or Yt ≥ b} (2.51)

= +∞, if the above set is empty (2.52)

For every y ≤ b, it is assumed that :

Un(y) = Ey[e
−
τn∫
0

(r̃+ε+φ(yu)du
I[Yτn=b]](e

b − q) (2.53)

Then the following results hold:

(i) Un(y) is the unique solution to the boundary value problem HUn(y) = 0 for all −n < y < b,

Ub(b) = eb − q and Un(−n) = 0.
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(ii) Un has no local extrema and U ′n > 0 on the interval [−n, b).

(iii) For any fixed y < b, the sequence (Un(y)) is strictly increasing in n.

(iv) lim
n→∞

Un(y) = Ub(y) for each y ≤ b where, Ub(y) is given by the equation 2.47.

Proof. From the theory of ordinary differential equations, it follows that there is a unique

solution to the boundary value problem given in part (i) of the lemma on the interval [−n, b].

For the stochastic representation, let τn be defined as in (2.52). Applying Ito’s lemma to the

function Un(y), we obtain:

E[Un(YT∧τn)e
−
T∧τn∫
0

(r̃+ε+φ(yu))du
] = Un(y) + E[

T∧τn∫
0

e
−

t∫
0

(r̃+ε+φ(yu))du
HUn(Yt)dt]

Now, since Un(y) is bounded and HUn(y) = 0 on [−n, b], we let T tend to infinity to obtain:

Un(y) = E[Un(Yτn)e
−
τn∫
0

(r̃+ε+φ(yu))du
]

Since Un(−n) = 0 and Un(b) = eb − q, it follows that:

Un(y) = Ey[e
−
τn∫
0

(r̃+ε+φ(yu)du
I[Yτn=b]](e

b − q)

This completes the proof of part (1).

For part (ii), we first note that the stochastic representation implies that Un(y) > 0 on the

interval [−n, b]. Now, if there exists a ζ ∈ (−n, b], such that U ′n(ζ) = 0, thenHUn(ζ) = 0 implies

that σ2

2 U
′′
n(ζ) = (r̃ + ε + φ(y))Un(ζ) > 0 and hence ζ is necessarily a strict local minimum.

Now, since Un(−n) = 0 < Ub(b) = eb − q and Un(y) > 0 on the interval [−n, b] and any critical

point is a strict local minimum, it simply implies U ′n(.) > 0 on the entire interval [−n, b].

To prove part (iii) of the lemma, we simply note that Un+1(b) − Un(b) = 0, Un+1(−n) >

Un(−n) = 0 and H(Un+1 − Un)(y) = 0 on (−n, b]. Therefore, using maximum principle for

differential equations,8 it follows that Un+1(y) > Un(y) on the interval (−n.b].
8Please refer to Protter and Weinberger (1967) for a detail discussion on the Maximum Principle.
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To prove part (iv), we consider the scale function S(.) of the diffusion process (Yt), which is

given by:

S(y) =

y∫
0

e
−σ

2

2

z∫
0

(r̃−σ
2

2
+φ(u))du

dz (2.54)

Then,

Py[Yτn = b] =
S(y)− S(−n)

S(b)− S(−n)
(2.55)

Since limy→−∞ φ(y) = +∞, it follows that limn→∞ S(−n) = −∞. Consequently, we obtain

limn→∞ Py[Yτn = b] = 1. Using the stochastic representation and the bounded convergence

theorem, the result follows.

Henceforth, Ub(y) is defined in (2.47) and satisfies the condition (iv) of Lemma (5). The

next proposition extends the domain of the function Ub(y) to the interval (−∞, b] and derives

some useful properties.

Proposition 6. Let us consider ŷ > b > ln(q), and the function Ub(y) is defined on the interval

(−∞, b]. Then, the following assertions hold:

(i) Ub(y) satisfies HUb(y) = 0 for all y < b.

(ii) Ub(y) > 0 and U ′b(y) > 0 for all y < b. Moreover, Ub(y) > 0 is bounded on (−∞, b].

(iii) Ub(y) > 0 is the unique solution to the boundary value problem HUb(y) = 0 for all y < b,

with the boundary conditions Ub(b) = eb − q and limy→−∞ Ub(y) = 0.

Proof. From the previous lemma, we know that the sequence of functions {Un(y)} is increasing

to Ub(.) on the interval (−∞, b]. Let us first fix a y < b. By integrating HUb(y) = 0 twice

on the interval [y, b] and by using integration by parts with the terms with first derivative, we
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obtain:

σ2

2
U ′n(b)(b− y) =

σ2

2
[Un(b)− Un(y)]− (r̃ − σ2

2
+ φ(b))Un(b)(b− y) (2.56)

+

b∫
y

(r̃ − σ2

2
+ φ(u))Un(u)du+

b∫
y

b∫
u

Un(s)φ′(s)dsdu (2.57)

+

b∫
y

b∫
u

(r̃ + ε+ φ(s))dsdu (2.58)

Now, by the previous lemma, 0 < Un(y) < eb − q for all y < b and limn→∞ Un(y) = Ub(y) for

each y ≤ b. Therefore, using bounded convergence theorem and the equation (2.58), it follows

that lim
n→∞

U ′n(b) = λ exists and λ is finite. Furthermore, the identity we obtain by replacing

U ′n(b) by λ and Un(.) by Ub(.) in the equation (2.58) remains valid. Hence, we have,

σ2

2
λ(b− y) =

σ2

2
[Un(b)− Ub(y)]− (r̃ − σ2

2
+ φ(b))Un(b)(b− y) (2.59)

+

b∫
y

(r̃ − σ2

2
+ φ(u))Ub(u)du+

b∫
y

b∫
u

Ub(s)φ
′(s)dsdu (2.60)

+

b∫
y

b∫
u

(r̃ + ε+ φ(s))dsdu (2.61)

Next, we divide the equation by (b − y) and let y → b and thus obtain U ′b(b−) = λ. By

replacing replacing λ by U ′b(b−) in the equation (2.61), and differentiating it twice, we obtain

HUb(y) = 0. Hence, part (i) follows.

By parts (ii) and (iv) of Lemma (5), it follows that Ub(y) is a non-decreasing on the interval

(−∞, b], and hence, U ′b(y) > 0 for all y < b. Also, Ub(y) > 0 for all y < b and Ub(b) = eb − q.

Suppose U ′b(ζ) = 0 for some ζ < b. Then, HUb(ζ) = 0 together with the fact that ζ < b implies

that U ′′b (ζ) > 0 and hence ζ is a strict local minimum for Ub(.). Therefore, by parts (2) and (4)

of Lemma (3), we can conclude for a large n, Un also has a local minimum in the neighborhood

(ζ − δ, ζ + δ), which contradicts part (2) of Lemma 3. Consequently, U ′b(y) > 0 for all y < b.

This together with the results of Lemma 3 implies that 0 < Un(y) ≤ Ub(y) < Ub(b) = eb − q.

This completes the proof of part (ii).
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The above proof of part (ii) also implies that Ub(y) is a non-negative and strictly increasing

and hence the lim
y→−∞

Ub(y) exists and finite. We intend to show that this limit is zero. For this,

we consider the differential equation:

σ2

2
U ′′b (y) + (r̃ − σ2

2
+ φ(y))U ′b(y)− (r̃ + ε+ φ(y))Ub(y) = 0 (2.62)

Using the facts that U ′b(y) > 0, φ(y) > 0, ε > 0 and (r̃ + ε + φ(y)) > 0 for y < b, we have

(r̃−σ
2

2
+φ(y))

(r̃+ε+φ(y)) < 1. We can use this inequality to deduce the following:

σ2

2

U ′′b (y)

(r̃ + ε+ φ(y))
+ U ′b(y) ≥ Ub(y)

Next, we keep y fixed and choose a c < y. Then, by integrating, we get:

σ2

2

y∫
c

U ′′b (u)

(r̃ + ε+ φ(u))
du+ Ub(y)− Ub(c) ≥

y∫
c

Ub(u)du (2.63)

Using integration by parts and U ′b(y) > 0, φ′(y) < 0, we derive,

y∫
c

U ′′b (u)

(r̃ + ε+ φ(u))
du =

U ′b(y)

(r̃ + ε+ φ(y))
−

U ′b(c)

(r̃ + ε+ φ(c))
(2.64)

+

y∫
c

U ′b(u)φ′(u)

(r̃ + ε+ φ(u))2
du ≤

U ′b(y)

(r̃ + ε+ φ(y))
(2.65)

We can combine the above derived inequalities (2.63) and (2.65) to deduce the following bound:

U ′b(y)

(r̃ + ε+ φ(y))
+ Ub(y) ≥

y∫
−∞

Ub(u)du (2.66)

Since Ub(.) > 0 on (−∞, y), we can conclude that the integral
y∫
−∞

Ub(u)du is convergent.

Moreover, Ub(.) is strictly increasing and positive, hence we can conclude that lim
y→−∞

Ub(y) = 0.

If there exists another bounded solution Ûb(y) to the boundary value problem on the interval
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(−∞, b], using Ito’s lemma we can obtain the stochastic representation (2.47) of the solution

and hence Ûb(y) coincides with Ub(y) on the interval (−∞, b]. Therefore, the uniqueness follows

and that completes the proof.

At this point, it is instructive to recapitulate what have been proven so far. With that

detail laid out, it would be easier to keep track of the direction we are proceeding, having the

goal in mind. It has been shown that, within the interval (−∞, b], the boundary value problem

specified in the equation (2.46) has a unique solution Ub(y). Moreover, the unique solution has

the stochastic representation (2.47) and the following properties:

Ub(y) > 0 and U ′b(y) > 0 for all y < b. Moreover, Ub(y) is bounded on (−∞, b].

Next, we extend each Ub(.) to the interval (−∞,∞) in such a way that it satisfies the linear

differential equation HUb(y) = 0, and examine the properties of such an extended function

to address the issue of existence. The next result documents that, such an extended Ub(y)

continue to exhibit the properties Ub(y) > 0 and U ′b(y) > 0 and Ub(y) has no local maxima or

minima on the entire interval (−∞,∞).

Proposition 7. Consider any b such that ŷ > b > ln(q), and the function Ub(.) is extended to

(−∞,∞) so that it satisfies the linear differential equation HUb(y) = 0. Then,

U ′b(y)− Ub(y) ≥ 2ε

σ2

y∫
−∞

e
− 2
σ2

y∫
u

(r̃+φ(s))ds
Ub(u)du (2.67)

holds for every y ∈ (−∞,∞). Consequently, U ′b(y) > 0 and Ub(y) has no local maxima or

minima on the entire interval (−∞,∞).

Proof. Extending the function Ub(y) to (−∞,∞) in such a way that it satisfies HUb(y) = 0,

we have,

σ2

2
U ′′b (y) + (r̃ − σ2

2
+ φ(y))U ′b(y)− (r̃ + ε+ φ(y))Ub(y) = 0 (2.68)

To reduce this second order linear homogeneous equation into a first order one, let Hb(y) =
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U ′b(y)− Ub(y). Using this transformation, the differential equation reduces to,

σ2

2
H ′b(y) + (r̃ + φ(y))Hb(y) = εUb(y)

Multiplying this equation by the integration factor e
2
σ2

y∫
c

(r̃+φ(s))ds
and integrating it, we obtain,

Hb(y) = Hb(c)e
− 2
σ2

y∫
c

(r̃+φ(s))ds
+

2ε

σ2

y∫
c

e
− 2
σ2

y∫
u

(r̃+φ(s))ds
Ub(u)du (2.69)

where, c < y is any real number. We can choose c in such a way that U ′b(c) > 0. It immediately

follows that Hb(c) = U ′b(c)− Ub(c) > −Ub(c) and therefore,

Hb(c)e
− 2
σ2

y∫
c

(r̃+φ(s))ds
≥ −Ub(c)e

− 2
σ2

y∫
c

(r̃+φ(s))ds

Letting c tend to −∞, we have the following inequality.

lim
c→−∞

Hb(c)e
− 2
σ2

y∫
c

(r̃+φ(s))ds
≥ lim

c→−∞
−Ub(c)e

− 2
σ2

y∫
c

(r̃+φ(s))ds
= 0 (2.70)

Thus, using (2.70) in (2.69), we have the conclusion that proves the first part of the proposition.

Hb(y) = U ′b(y)− Ub(y) ≥ 2ε

σ2

y∫
−∞

e
− 2
σ2

y∫
u

(r̃+φ(s))ds
Ub(u)du

The remaining part of the proposition is a straightforward implication of this inequality we

just derived, (2.67).

To illustrate, let us assume there exists a point η such that U ′b(η) = 0. This implies that:

Hb(η) = −Ub(η) ≥ 2ε

σ2

η∫
−∞

e
− 2
σ2

y∫
u

(r̃+φ(s))ds
Ub(u)du (2.71)
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This above mentioned equation leads us to,

Ub(η) ≤ − 2ε

σ2

η∫
−∞

e
− 2
σ2

y∫
u

(r̃+φ(s))ds
Ub(u)du (2.72)

which is clearly a contradiction, since Ub(y) > 0 for all y ∈ (−∞,∞). Therefore, we conclude

that U ′b(y) > 0 for all y and Ub(y) has no local maxima or minima on the entire interval

(−∞,∞).

So far, we have shown that the function Ub(y) is positive, increasing and has no local

maxima or minima on the entire interval (−∞,∞). The function, by construction, has an

intersection point with the curve (ey− q) at y = b. To address the issue of existence of exercise

boundary successfully, it is enough to show that for a large y, we have Ub(y) > (ey − q). This

will enable us to show that the function Ub(y) that satisfies HUb(y) = 0 intersects the stopping

boundary (ey − q)+ twice. Consequently, we consider constant multiples of such a solution

Ub(y) to obtain a b∗ so that the corresponding Ub∗(.) meets the stopping boundary tangentially

at a single point, which is the desired optimal exercise boundary.

To show the graph of the function Ub(y) intersects that of (ey−q)+ at least twice in the interval

[ln q,∞), it is sufficient to show that there exists a large y that satisfies e−yUb(y) > 1− qe−y.

The next proposition addresses this remaining bit of existence issue under certain parametric

restrictions.

Proposition 8. If −2r̃
σ2 > 1, then limy→∞ e

−yUb(y) = +∞.

Proof. From the previous lemma and equation (2.67), we know the function Ub(y) satisfies the

following property:

U ′b(y)− Ub(y) ≥ 2ε

σ2

y∫
−∞

e
− 2
σ2

y∫
u

(r̃+φ(s))ds
Ub(u)du

Multiplying both sides of the inequality by the integrating factor e−y and integrating it, we

obtain,

e−y(U ′b(y)− Ub(y)) ≥ 2ε

σ2
e−y

y∫
−∞

e
− 2
σ2

y∫
u

(r̃+φ(s))ds
Ub(u)du
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or,

d

dy
(e−yUb(y)) ≥ 2ε

σ2
e−y

y∫
−∞

e
− 2
σ2

y∫
u

(r̃+φ(s))ds
Ub(u)du

or,

e−yUb(y) ≥ e−bUb(b) +
2ε

σ2

y∫
b

e−u(

u∫
−∞

e
− 2
σ2

y∫
x

(r̃+φ(s))ds
Ub(x)dx)du

Since we consider y large and limy→∞ φ(y) = 0, we can ignore φ(y). Also, ebUb(b) = 1− qe−b.

Additionally, since Ub(y) is positive and increasing, the value of this function is bounded below

by Ub(b). Thus, incorporating all these boundary values, we obtain:

e−yUb(y) ≥ 1− qe−b +
2ε

σ2

y∫
b

e−u(

u∫
−∞

e
− 2
σ2

y∫
x

(r̃+φ(s))ds
Ub(x)dx)du (2.73)

Finally, we note that, if −2r̃
σ2 > 1,

lim
y→∞

2ε

σ2

y∫
b

e−u(

u∫
−∞

e
− 2
σ2

y∫
x

(r̃+φ(s))ds
Ub(x)dx)du = +∞ (2.74)

Thus, we have the result of the proposition.

lim
y→∞

e−yUb(y) = +∞

This completes the proof of the proposition.

The above proposition shows that if −2r̃
σ2 > 1, lim

y→∞
e−yUb(y) = +∞. Therefore, for a given

q, we can choose a b0 > ln q, such that Ub0(b0) > eb0 − q. Consequently, there is a δ such that

ey − q > Ub0(y) for all y ∈ (b0 − δ, b0). Also, Ub0(y) > 0 > ey − q when y < ln q. The above

logical reasoning confirms the fact that the graph of the function Ub0(y) intersects the curve

(ey − q) at least twice in the interval [ln q, b0]. A figure will be illuminating.
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Figure 2.2 Family of Solutions
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As shown in the figure, once we prove the intersection of these two curves, it is a matter of

multiplying the solution of the differential equation with a constant until the shifted solution

is tangent to the stopping boundary. The point of tangency is termed as optimal exercise

boundary and represents the transformed value of discounted stock price where it is optimal

for the owner to regain the stock. To accomplish this, we let,

k = inf{y : y > ln q and ey − q = Ub0(y)} (2.75)

Then, ln q < k < b0. Since Ub0(y) > 0 > (ey − q) when y < ln q, y = k becomes the first point

of intersection between these two curves. Therefore, U ′b0(k) < ek.

Since the differential equation is homogeneous, a constant multiple of the function gives the

desired solution. This result is documented in the next theorem that completes the existence

of the optimal exercise boundary.

Theorem 9. (i) There exists a point b∗ > ln q and a corresponding positive function Ub∗(.)

defined on (−∞,∞) such that HUb∗(y) = 0 for all y, Ub∗(b
∗) = (eb

∗−q) and and U ′b∗(b
∗) =

eb
∗
. Moreover, Ub∗(y) = ey − q for all y ≥ b∗.
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(ii) There exists a point x∗ and a positive function Q̂ defined on (0,∞), which satisfy all the

conditions described in the Theorem 4.

Proof. Consider the point k and the function Ub0(.) described above. We consider the family

of constant multiples of Ub0(.) given by {tUb0(.) : t ≥ 1}, where t is a parameter. Since there

exists a δ such that ey − q > Ub0(y) for all y ∈ (b0 − δ, b0), and Ub0(y) > 0 > ey − q when

y < ln q, clearly, there exists a δ2 > 0 such that the graph of tUb0(y) also intersects that of

(ey − q) at least twice in the interval (k, b0), when 1 < t < 1 + δ2. On the other hand, since

Ub0(y) is strictly increasing, if we have t > t1 = eb0−q
Ub0 (k) , then tUb0(y) > (ey − q) for all y in the

interval [k, b0]. Therefore, we introduce,

t∗ = inf{t ≥ 1 : tUb0(y) > (ey − q) for all y ∈ (k, b)} (2.76)

Then t∗ is well defined and 1 + δ2 < t∗ < t1. From the above analysis, it follows that the graph

of t∗Ub0(y) intersects that of (ey − q) tangentially at some point on the interval [c, b0]. Then

we denote the point of tangency as b∗ as follows:

b∗ = inf{y : k < y < b0 and t∗Ub0(y) = (ey − q)} (2.77)

Then, it clearly implies that t∗Ub0(b∗) = (eb
∗ − q) and t∗U ′b0(b∗) = eb

∗
. Since HUb∗(y) = 0

is a linear homogeneous differential equation and the function t∗Ub0(y) also satisfies all the

conditions of the proposition 6 and therefore, coincides with the function Ub∗(y). Therefore, all

the conditions of the part (i) of the theorem are met by the point b∗ and the function Ub∗(y)

and hence the result.

To prove part (ii) of the theorem, we simply use the reverse transformation x = ey and let

Q̂(x) = Ub∗(lnx) for all x > 0. Also, denoting x∗ = eb
∗
, we have x∗ and the function Q̂

satisfying all the conditions of the Theorem 4. Finally, we also have,

lim
x→0+

Q̂(x) = lim
y→−∞

Ub∗(y) = 0 (2.78)

This completes the proof of the existence of the optimal exercise boundary.



www.manaraa.com

64

To sum up, this section introduces the risk of bankruptcy according to the reduced form

or, intensity modeling approach. We assume that default intensity is a function of discounted

stock price and consequently, use a logarithmic transformation to facilitate our analysis. In

this formulation, we prove the existence of an optimal exercise boundary. This optimal exercise

boundary is of a threshold type and represents the transformed discounted stock price where

it is optimal for the owner to exercise the option. Finally, the reverse transformation gives the

optimal solution for the original problem and thus, we prove the existence of the analytical

solution. In the next section, we use numerical methods to solve for the optimal stopping

problem. Moreover, the sensitivity of the optimal exercise boundary to the relevant parameters

of the system is analyzed, which is useful to address policy issues in the valuation of mortgage-

backed securities.

2.4.7 Sensitivity Analysis using Numerical Methods

Theory of dynamic programming for optimal stopping problems suggests that the solution

of the optimal stopping problem coincides with the smooth solution of the HJB equation, given

by (2.37). This is the starting point of our numerical analysis. We use numerical methods to

find a smooth solution of the HJB equation (2.37). To this end, we first numerically solve the

linear homogeneous ordinary differential equation part of the HJB equation:

σ2

2
x2Q′′(x) + (r̃ + h(x))xQ′(x)− (r̃ + ε+ h(x))Q(x) = 0

with the boundary conditions lim
x→0

Q(x) = 0 and Q(b) = (b−q)+. This is essentially a boundary

value problem. We use the Matlab boundary value problem solver (bvp4c or bvp5c) to solve the

problem. These solvers decompose the differential equation into a system of first order ODE’s

and use the collocation method to solve the differential equations and are quite robust in solving

both linear and non-linear ODE’s. Since the default intensity is a decreasing function of stock

price, the differential equation is not defined at the left boundary point x = 0. However, since

the left boundary condition is a limiting one, we take a value close to zero which successfully
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serve the purpose.9 For the right boundary, we consider a point that is higher than value of

q. The initial choice of parameters are: r = 0.02, γ = 0.07, ε = 0.001, σ = 0.4, q = 1 and

x ∈ [0.001, 3]. With this parameter specification the following figure plots the optimal exercise

boundary, denoted as Xopt = 1.3169.

Figure 2.3 Optimal Exercise Boundary
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Next, we address the issue of sensitivity of the optimal exercise boundary. The comparative

movement of the optimal stopping boundary in response to changes in the relevant parameters

of the system is presented in Table 1. Each column of the table shows the values of the

corresponding parameters and the very last column shows the resulting optimal boundary,

Xopt. The table precisely documents the resulting effect of relative strength of the counteractive

forces on optimal exercise boundary. An upshot of the findings and the relevant policy issues

are addressed subsequently.

9To address the issue in general, this condition gives rise to a singularity problem. Standard theory of
convergence had been extended to BVP’s to solve such problems (de Hoog and Weiss 1976, 1978). The idea
behind it is to approximate the solution near the singular point by analytical means and use the approximate
solution for the critical region (Shampine, Gladwell and Thompson, 2003).
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Table 2.1 Sensitivity of the Optimal Exercise Boundary

Interest Rate (r) Lending rate (γ) r̃ = r − γ Volatility (σ) Loan (q) X∗(Xopt)

0.02 0.10 -0.08 0.40 1 1.3169

0.02 0.15 -0.13 0.40 1 1.3169

0.02 0.20 -0.18 0.40 1 1.3475

0.02 0.25 -0.23 0.40 1 1.3781

0.02 0.30 -0.28 0.40 1 1.3475

0.01 0.25 -0.24 0.40 1 1.3475

0.09 0.25 -0.16 0.40 1 1.3475

0.10 0.25 -0.15 0.40 1 1.3169

0.20 0.25 -0.05 0.40 1 1.3169

0.02 0.05 -0.03 0.44 1 1.3475

0.02 0.05 -0.03 0.48 1 1.3781

0.02 0.05 -0.03 0.52 1 1.4087

0.02 0.05 -0.03 0.56 1 1.4699

0.02 0.05 -0.03 0.60 1 1.5005

0.02 0.05 -0.03 0.4 0.5 0.8885

0.02 0.05 -0.03 0.4 1.5 1.7759

0.02 0.05 -0.03 0.4 2.0 2.2349

0.02 0.05 -0.03 0.4 2.5 2.7246

2.4.7.1 Discussion

First, we address the issue of the effect of change in interest rate (r) and lending rate (γ)

on the optimal decision threshold. It is evident from the figures that minor changes in either

of those rates does not have a significant effect on the boundary. The decision threshold starts

responding only when these rates differ significantly from each other. To fix the idea, another

column is added that documents the difference between interest rate and loan rate, which can

be thought of as effective rate of return from this discounted stock price, S̃t. We note that,

the optimal decision threshold is crucially contingent on this effective rate of return, instead of

the rates individually. When the lending interest rate is increased beyond γ = 0.18, keeping

r fixed at 0.2, optimal exercise boundary tends to exhibit a steady upward movement. This

trend continues until γ = 0.25 is reached. Beyond that point, optimal boundary is negatively

related to γ. Similar effect can be generated by keeping γ fixed at a high level, and then

gradually reducing interest rate r. Both this avenues lead us to the same conclusion that in

this framework, effective rate of return (r̃) significantly affects the optimal exercise boundary.

The intuition behind this effect can be traced back through the relative strength of the counter-
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active forces that govern the dynamics of intensity modeling. This effective rate of return is

a significant part of the expected rate of return from the stock as well as the discount factor.

These two effect works in opposite direction in the decision to optimally exercise the financial

derivative. Initially, increase in γ increases rate of return more than the discount factor and

resulting effect on exercise boundary is positive. After the critical level of γ is reached, the

dominating effect reverse in direction and consequently, we have the negative relation. The

effect of change in volatility parameter, σ is comparatively much more intense. Increase in the

value of the volatility causes a steady and steep rise in the optimal exercise boundary. This

effect can be better explained using the transformed problem, described in equations (2.43) and

(2.44). An increase in σ increases the volatility as well as causes a steep decline in expected

rate of return. Since the return decreases faster, agent tend to wait longer in anticipation

of capital gain from increased stock price. Finally, the optimal exercise boundary shows a

dramatic increase in optimal threshold in response to an increase in loan amount (q). As the

loan amount goes up, the exercise boundary shifts to the right, which means that discounted

stock price has to be even higher for the rational agent to regain the stock. Now, intuitively,

keeping all other policy variables of the economy unchanged, if the lender agrees to lend a

higher amount for the same stock, that implicitly means higher loan amount maximize the

expected return of the bank and the stock price has a probability to show upward trend. This

effect coupled with rationality on the agents part tend to move the optimal exercise boundary

upward.

2.5 Conclusion

In this chapter, we address the issue of valuation of a financial derivative when the under-

lying asset is subject to bankruptcy. The risk of bankruptcy is introduced according to both

structural and reduced form modeling approach. In the structural form modeling, notion of

bankruptcy is introduced following Black and Cox (1976) formulation where the asset is consid-

ered as bankrupt as soon as the asset price hits a lower boundary. Modeling the lower boundary

as an increasing function of time, closed form expression for the valuation is derived in terms

of probability distribution of the first passage time of Brownian motion and the valuation of
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down and out barrier option. As a salient feature of this umbrella formulation, default time

turns out to be a predictable stopping time. In the reduced form approach, default intensity

is assumed to be a decreasing function of discounted stock price, which can be interpreted as

conditional probability of default. The event of bankruptcy is modeled as a non-predictable

phenomenon. The qualitative nature and the characteristics of the value function is rigorously

studied and existence of an optimal exercise boundary is established. We also prove that this

optimal exercise boundary is of threshold type and contingent on the policy variables that

are treated as parameters of the system. We proceed further to use numerical methods to

address the sensitivity analysis of the optimal exercise boundary. The results of our numerical

simulation provide further insights into the linkage between optimal exercise boundary and

the policy variables. We find that optimal exercise boundary is crucially contingent on the

effective rate of return (defined as the difference between interest and lending rate) and ex-

hibits a non-monotone relationship. However, the boundary is not so sensitive to the change

in interest rate or lending rate until the difference is substantial. An increase in the Brownian

volatility parameter causes a steep increase in the optimal decision threshold and magnitude

of change is higher. We get an interval where optimal exercise boundary shows a monotone

increasing relationship with an increase in volatility. The intuitions behind all the results are

clearly explained. This numerical part of the research opens a scope for a potential future

research that analyzes the dependence of the optimal decision boundary on the policy variables

in a much more exhaustive manner. We also perform a sensitivity analysis with respect to the

loan amount and get a positive monotone relationship. Therefore, to conclude, we note that

introduction of credit risk results significant qualitative changes in the valuation of a financial

instrument. Introducing intensity function as a decreasing function of discounted stock price is

an alternative way that facilitated our analysis and produced insightful results. However, tradi-

tional beliefs about high interest rate or lending rate can be misleading in policy prescriptions

in such a situation, primarily because of the dependence on the effective rate of return.
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APPENDIX A. Appendix to Chapter 1

Optimal resource allocation of agents R and P

The optimization problem of agent R in the second stage of first period is:

max lnC1R + β lnC2R (A.1)

subject to pY (1− τ) = C1R +KR +XR (A.2)

p′Y ′ = C2R (A.3)

p′ =
(XR −G)m

(XR −G)m + (XP −G)m
(A.4)

Y´= ARKR +APKP (A.5)

The interior optimality conditions are:

1

C1R
=
βAR
Y´

(A.6)

m(XP −G)m

(XR −G){(XR −G)m + (XP −G)m}
=
AR
Y´

(A.7)

Analogus expressions for agent P are given by:

1

C1P
=
βAP
Y´

(A.8)

m(XR −G)m

(XP −G){(XR −G)m + (XP −G)m}
=
AP
Y´

(A.9)
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Denote, α = (XR −G)m + (XP −G)m. Dividing (A.7) by (A.9), we get

m(XP −G)m

(XR −G)α
�

(XP −G)α

m(XR −G)m
=
AR
AP

(A.10)

or,

(
XP −G
XR −G

)m+1

=
AR
AP

(A.11)

or,
(XP −G)

(XR −G)
=

(
AR
AP

) 1
m+1

. (A.12)

Dividing (A.4) by (XR −G)m we get

p′ =
1

1 +
(
XP−G
XR−G

)m (A.13)

Substituiting the expression in (A.12) in (A.13) we get

p′ =
1

1 +
(
AR
AP

) m
m+1

(A.14)

Using the resource constraints and above formulation of p′, we can reduce the FOC’s of agents

R and P as a system of linear equations in Ci and Xi, i ∈ {R,P}. The unique solution to the

linear system is given by:

C1R =
1

β(1 +m) + 2

[
(p+ (1− p)AP

AR
)(1− τ)Y − (1 +

AP
AR

)τY

]
(A.15)

C1P =
1

β(1 +m) + 2

[
(
AR
AP

p+ (1− p))(1− τ)Y − (1 +
AR
AP

)τY

]

XR =

 1(
AP
AR

) m
m+1

+ 1

 mβ

2 + β(1 +m)
∆ + τY

XP =

 1(
AP
AR

) m
m+1

+ 1

 mβ

2 + β(1 +m)
∆

(
AR
AP

) 1
m+1

+ τY

where, ∆ = [(p + (1 − p)APAR )(1 − τ)Y − (1 + AP
AR

)τY ]. This concludes the derivation of the

optimal consumption and resource allocation.
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Proof of Proposition 2

We start by proving: If τ ≤ τinv, positive investment equilibrium exists. We need to find

a bound on τ such that XP −G ≥ 0, XR −G ≥ 0,KP ≥ 0, KR ≥ 0. From the expressions of

appropriative investments from (A.15) we see that XR −G ≥ 0 if ∆ ≥ 0. Now ∆ ≥ 0 implies

1− τ
τ
≥

1 + AP
AR

p+ (1− p) ApAR
∀ AP
AR
∈ [

AL

AH
,
AH

AL
] (A.16)

Taking limit on both sides as AH

AL
→ 1 we have 1−τ

τ ≥ 2 this implies 1 − τ ≥ 2τ , or 3τ ≤ 1,

i.e. τ ≤ 1
3 . similar reasoning holds good for XP − G ≥ 0. Thus for τ ∈ [0, τ ], where τ = 1

3 ,

equibrium effective appropriative investments are positive. We check the conditions under

which KR,KP ≥ 0. Substituting the values of XR, C1R in the expression of KR we see that

KR reduces to

KR = pY (1− τ)− [
mβ

2 + β(1 +m)

∆(
AP
AR

) m
m+1

+ 1

+ τY ]− ∆

2 + (1 +m)β
(A.17)

Upon tedious manipulation we see that KR ≥ 0 implies

p(1− τ)− a+ b− τ − (1− τ)∆

2 + β(1 +m)
+

(1 + z)τ

2 + β(1 +m)
≥ 0 (A.18)

Where a = mβ(1−τ)∆

(2+β(1+m))(z)
m
m+1 +1

, b = mβ(1+z)τ

(2+β(1+m))(z)
m
m+1 +1

, z = AP
AR

. Taking limit on both sides of

the above equation as AH

AL
→ 1 we have

τ [−(1− p) +
6 + 3mβ

2(2 + β(1 +m))
] ≥ mβ + 2

2(2 + β(1 +m))
− p (A.19)

If we assume, [−(1 − p) + 6+3mβ
2(2+β(1+m)) ] > 0, we arrive at a condition that states p < 1

2 , which

contradicts our basic assumption. Thus −(1 − p) + 6+3mβ
2(2+β(1+m)) < 0. By similar reasoning

mβ+2
2(2+β(1+m)) − p < 0. Rearranging terms we see that KR ≥ 0 iff τ ≤

mβ+2
2(2+β(1+m))

−p

−(1−p)+ 6+3mβ
2(2+β(1+m))

. Let

us call τ1 =
mβ+2

2(2+β(1+m))
−p

−(1−p)+ 6+3mβ
2(2+β(1+m))

. Again, for KP ≥ 0, we substitute the values of XP and

CP in the expression of KP , which gives,KP = (1 − p)(1 − τ)Y − c − τY − d where c =
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mβ∆[(1−τ)
2+β(1+m)

1

(1+
(
AP
AR

) m
m+1 )

(
AR
AP

) 1
m+1

, d = ∆
2+β(1+m) . Taking limit on both sides of the expression

of KP as AH

AL
goes to 1 we get KP ≥ 0 iff

(1− p)(1− τ)− mβY

2 + β(1 +m)
[
(1− 3τ)

2
+ (1− 3τ)]− τ ≥ 0

iff , τ ≤ 2 +mβ + 2(p− 1)(2 + β(1 +m))

−2(1− p)(2 + β(1 +m)) + 2 +mβ − 2β

Let τ2 = 2+mβ+2(p−1)(2+β(1+m))
−2(1−p)(2+β(1+m))+2+mβ−2β . Thus KP ≥ 0 iff τ ≤ τ2. Thus for τ ≤ min{τ , τ1, τ2} all

the three inequalities are satisfied. We denote τinv = min{τ , τ1, τ2}.Thus there exists positive

levels of investment for τ < τinv as, AH

AL
−→ 1

Next, we prove the second part of the proposition. We show that an agent’s best response

to any choice of technology by the other agent involves in either choosing the best technology

or the worst one i.e Ai ∈ {AL, AH} for a given interval. Substituting the values of C1R and

C2R into the utility function, we get UR = UR(AR, AP ). Differentiating UR w.r.t AR we get,

∂UR
∂AR

≥ 0 iff
τ

1− τ
≥ Γ(x) (A.20)

provided (1− τ)(p+ (1− p)x)− (1 + x)τ ≥ 0 and φk(x)(1 + x) + x− β ≥ 0. Here Γ(x) = f(x)
g(x) ,

x = AP
AR

, f(x) = (p+(1−p)x)[1+φk(x)]− (1+β)p, g(x) = φk(x)(1+x)+x−β. Also, φ = mβ
m+1

< β,and k(x) = 1

1+x
m
m+1

. Now,

Γ′(x) ≥ 0

iff , [β(2p− 1) + φ(1− β)(1− 2p)k(x) + φ2(1− 2p)k(x)2 + φ(1 + β)(2p− 1)k′(x)x ≥ 0

iff , βx
2m
m+1 + [(β − φ)(1 + φ) + β(1− (

m

m+ 1
)2)]x

m
m+1 + (β − φ)(1 + φ) ≥ 0. (A.21)

The above is an equation of a parabola where both the roots, say x1 and x2, are negative.

Therefore, for all x ≥ max{x1, x2}, the Γ(x) is positively sloped. For the values of x that

satisfy equations (A.21), we get the best response of agent R is to choose either AL or AH . This

interval of x implicitly put a restriction on τ . We denote that critical value of τ ≥ τR = 1−p
2−p .



www.manaraa.com

73

Again, substituting C1P and C2P into the utility function, we get

UP = UP (AR, AP )

Following the same steps for the poor agent, we get if ,(1− τ)(py + 1− p)− τ(1 + y) ≤ 0, and

(1 + β)(1− p)− (py + 1− p)(1 + φk(y) ≤ 0 then,

∂UP
∂AP

≥ 0 iff
1− τ
τ
≥ G(y) where, (A.22)

G(y) =
β − y − φk(y)(1 + y)

(1 + β)(1− p)− (py + 1− p)(1 + φk(y)
, y =

AR
Ap

Now, G′(y) ≥ 0

iff [β(2p− 1) + φ(1− β)(1− 2p)k(y) + φ2(1− 2p)k(y)2 + φ(1 + β)(2p− 1)k′(y)y ≥ 0

iff (β − φ)(1 + φ)x
2m
m+1 + [(β − φ)(1 + φ) + β(1− (

m

m+ 1
)2)]x

m
m+1 + β ≥ 0 (A.23)

Which is again an equation of a parabola, where both the roots (say x3, x4) are negative, though

different in values. Then, x ≥ max{x3, x4}, G(y) is positively sloped. Thus, for x ≥ 0,both

Γ(x) and G(y) are postively sloped. Therefore, for the values of x that satisfy equation (A.23),

we get the best response for agent P is to choose either AL or AH .This interval of x implicitly

put a restriction on τ. We denote that critical value of τ ≤ τP = p
1−p .

Let AH

AL
→ 1. If τ ∈ [1−p

2−p ,
p

1+p ], then both the agents best response is to adopt either AH or

AL. We denote τH = 1−p
2−p . From the Lemma 1, we know that positive investment equilibrium

exists for τ ≤ τinv. Thus for τ ∈ [τH , τinv], [AH , AH ] can be sustained as a positive investment

equilibrium. This completes the proof.

Proof of Corollary 1

Given (AL, AL) is an equilibrium in the bench-mark model the optimal choices of C1i and

C2i, i ∈ {R,P} are given as C1i = Y
2+β(1+m) ,C2i = βY AL

2(2+β(1+m)) . The SWF in this case is given
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by

SWF (AL, AL) = (lnC1P + β lnC2P ) + (lnC1R + β lnC2R)

plugging in the values of C1i and C2i into the above equation we have

SWF (AL, AL) = ln
Y 2

(2 + β(1 +m))2

(
βALY

2 (2 + β(1 +m))

)2β

Similarly when (AH , AH) is an equilibrium in the guard posting framework the optimal choices

of C1i and C2i, i ∈ {R,P} are C1i = Y (1−3τ)
2+β(1+m) and C2i = βAH(1−3τ)Y

2(2+β(1+m)) respectively. Plugging in

the expressions of C1i and C2i in the social welfare function SWF = UR +UP and rearranging

the terms we get

SWF (AH , AH) = ln

[(
(1− 3τ)Y

(2 + β(1 +m))

)2( βAHY (1− 3τ)

2 (2 + β(1 +m))

)2β
]

From this it follows that

SWF (AH , AH) ≥ SWF (AL, AL)

if

(
(1− 3τ)Y

(2 + β(1 +m))

)2( βAHY (1− 3τ)

2 (2 + β(1 +m))

)2β

≥ Y 2

(2 + β(1 +m))2

(
βALY

2 (2 + β(1 +m))

)2β

⇔ (1− 3τ)2
(
AH
)2β

(1− 3τ)2β ≥
(
AL
)2β ⇔ AH

AL
≥
(

1

(1− 3τ)2(β+1)

) 1
2β

This completes the proof.
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